Asian Journal of Convergence in Technology

Issn !No.:2350-1146, 1. F-2.71

Yolumesl, Issue 5

P2P Botnet Prevention With The Help of Sybil Attack

1%t Avadhoot S. Joshi

Asst. Prof. at Computer Science &
Engineering Dept.
VVPIET, Solapur

Solapur, India
joshisavadhoot@rediffmail.com

Abstract—*“Botnet” is a network of computers that are
compromised and controlled by an attacker. Botnets are one of
the most serious threats to today’s Internet. Most current botnets
have centralized command and control (C&C) architecture.
However, peer-to-peer (P2P) structured botnets have gradually
emerged as a new advanced form of botnets. Without central
C&C servers, P2P botnets are more resilient to defences and
countermeasures than traditional centralized botnets. In this
paper, we systematically study P2P botnets along multiple
dimensions: bot candidate selection, network construction, C&C
mechanisms and communication protocols, and mitigation
approaches. We carefully study two defence approaches: index
poisoning and Sybil attack. According to the common idea
shared by them, we are able to give analytical results to evaluate
their performance. We also propose possible counter techniques
which might be developed by attackers against index poisoning
and Sybil attack defences. In addition, we obtain one interesting
finding: compared to traditional centralized botnets, by using
index poisoning technique, it is easier to shut down or at least
effectively mitigate P2P botnets that adopt existing P2P protocols
and rely on file index to disseminate commands.

Keywords—Botnet; P2P Botnet; Index poisoning; Sybil attack;
Kademlia protocol.

I. INTRODUCTION

“Botnet” is a network of compromised computers (bots)
running malicious software, usually installed via all kinds of
attacking techniques such as Trojan horses, worms and
viruses. These zombie computers are remotely controlled by
an attacker (botmaster). Botnets with a large number of
computers have enormous cumulative bandwidth and
computing capability. They are exploited by botmasters for
initiating various malicious activities, such as email spam,
distributed denial-of service attacks, password cracking and
key logging. Botnets have become one of the most significant
threats to the Internet.

Today, centralized botnets are still widely used. In a
centralized botnet, bots are connected to several servers
(called C&C servers) to obtain commands. This architecture is
easy to construct and efficient in distributing botmaster’s
commands; however, it has a weak link - the C&C servers.
Shutting down those servers would cause all the bots lose

WWW.Asianssr. org

2" Sagar M. Mane

Asst. Prof. at Computer Science &
Engineering Dept.
VVPIET, Solapur

Solapur, India
sgrmane@gmail.com

3 Vishal V. Bhanawase

Asst. Prof. at Computer Science &
Engineering Dept.
VVPIET, Solapur

Solapur, India
vishal1234_2@yahoo.com

contact with their botmaster. In addition, defenders can easily
monitor the botnet by creating a decoy to join a specified C&C
channel. Today several P2P botnets have emerged Just like
P2P networks, which are resilient to dynamic churn (i.e., peers
join and leave the system at high rates), P2P botnet
communication won’t be disrupted when losing a number of
bots. In a P2P botnet, there is no central server, and bots are
connected to each other and act as both C&C server and client.
P2P botnets have shown advantages over traditional
centralized botnets. As the next generation of botnets, they are
more robust and difficult for security community to defend.

Researchers have started to pay attention to P2P botnets.
However, in order to effectively fight against this new form of
botnets, enumerating every individual P2P botnet we have
seen in the wild is not enough. Instead, we need to study P2P
botnets in a systematic way.

Il. P2P BOTNET

In the following, we will discuss how pull and push C&
mechanisms can be applied in P2P botnets.

A. Leveraging Existing P2P Protocols:

As we discussed above, both parasite and leeching P2P
botnets depend on existing P2P networks. Thus it is natural to
leverage the existing P2P protocols used by the host P2P
networks for C&C communication. Besides, these protocols
have been tested in P2P file-sharing applications for a long
time, so they tend to be less error-prone than newly designed
ones, and have nice properties to improve performance of P2P
systems and mitigate network problems, such as link failure or
churn. The following discussion is based on parasite and
leeching P2P botnets, but bot-only botnet can adopt these
protocols as well.

In P2P file-sharing systems, file index which is used by
peers to locate the desired content, may be centralized (e.g.,
Napster), distributed over a fraction of the file-sharing nodes
(e.g., Gnutella), or distributed over all or a large fraction of the
nodes (e.g., Overnet). A peer can send out query message for
the file it is searching for, and the message will be passed
around according to the routing algorithm implemented in the

Mail: asianjournalzois@gmail.com

http://www.asianssr.org/

Asian Journal of Convergence in Technology
Issn !No.:2350-1146, 1. F-2.71

system. The search will terminate when query hits are returned
or the query message expires.

Botmasters can easily adopt the above procedure to
disseminate commands in pull style. They can insert records
associated with some predefined file titles or hash values into
the index, but rather than putting the content location
information, botnet commands are attached. In order to get
commands issued by botmasters, bots periodically initiate
queries for those files or hashes, and nodes who preserve the
corresponding records will return query hits with commands
encoded. In other words, bots subscribe the content, i.e.,
commands, published by botmaster.

Take the early version of Storm botnet for example, it
utilizes the Overnet, and implements pull C&C mechanism. In
this botnet, every day there are 32 hash keys queried by bots to
retrieve commands. These 32 keys are calculated by a built-in
algorithm, which takes the current date and a random number
from [0-31] as input. Therefore, when issuing a command, the
botmaster needs to publish it under 32 different keys.
Trojan.Peacomm botnet employs the similar C&C design.

Compared to pull mechanism, implementation of push
mechanism on existing P2P protocols is more complex. There
are two major design issues:

i Which peers should a bot forward a command to?
ii. How to forward commands: using in-band (normal
P2P traffic) or out-of-band messages (non-P2P traffic)?

To address the first issue, the simplest way is to let a bot
use its current neighbouring peers as targets. But the problem
of this approach is that command distribution may be slow or
sometimes disrupted, because 1) some bots have a small
number of neighbours, or 2) some peers in a bot’s neighbour
lists are not bot members in the case of parasite or leeching
P2P botnets. One solution to this problem is that letting bots
claim they have certain popular files available which are
predefined, and forwarding commands to peers appearing in
the search results for those files. Thus the chance of
commands hitting an actual bot is increased. These predefined
popular files behave as the watchwords for the botnet, but
could give defenders a clue to identify bots.

For the second issue, whether using in-band or out-of-band
message to forward a command depends on what the peers in
the target list are. If a bot targets its neighbouring peers, in-
band message is a good choice. A bot could encode a
command in a query message, which can only be interpreted
by bots, send it to all its neighbours, and rely on them to
continue passing on the command in the botnet. This scheme
is easy to implement and hard for defenders to detect, because
there is no difference between command forwarding traffic
and normal P2P traffic. On the other hand, if the target list is
generated in other ways, like using peers in returned search
results discussed above, bots have to contact those peers using
out-of-band message. Obviously out-of-band traffic are easier
to detect, and hence, can disclose the identities of bots who
initiate such traffic.

WWW.Asianssr. org

Yolumesl, Issue 5

The above discussion mainly focused on unstructured P2P
networks, where query messages are flooded to the network.
In structured P2P networks (e.g., Overnet), a query message is
routed to the nodes whose node IDs are closer to the queried
hash key, which means queries for the same hash key are
always forwarded by the same set of nodes. Therefore, to let
more bots receive a command, the command should be
associated with different hash keys, such that it can be sent to
different parts of the network.

B. Design A New P2P Communication Protocol

It is convenient to adopt existing P2P protocols for P2P
botnet C&C communication, however, the inherited
drawbacks may limit botnet design and performance. A botnet
can be more flexible if it uses a new protocol designed by its
botmaster.

The advanced hybrid P2P botnet and the super botnet are
two newly designed P2P botnets, whose C&C communication
are not dependent on existing P2P protocols. Both of them
implements push and pull C&C mechanisms. In a hybrid P2P
botnet, when a bot receives a command, it forwards the
command to all the peers in the list (push), and those who
cannot accept connection from others periodically contacts
other bots in the list and try to retrieve new commands (pull).
A super botnet is composed of a number of small centralized
botnets. Commands are pushed from one small botnet to
another, and within a small centralized botnet, bots pull the
command from their C&C servers. Furthermore, the hybrid
P2P botnet is able to effectively avoid bootstrap procedure,
which is required by most of the existing P2P protocols, by 1)
passing a peer list from one bot to a host that is infected by
this bot, and 2) exchanging peer lists when two bots
communicate.

The drawback of designing a new protocol for P2P botnet
communication is that the new protocol has never been tested
before. When a botnet using this protocol is deployed, the
network may not be as stable and robust as expected due to
complex network conditions and defences [9].

C. Functionalities of P2P Botnet

In this section we detail two key functionalities of P2P bot:
C&C functionality and P2P functionality. And then, several
features are proposed to describe P2P bot.

[1]. Functionalities of P2P Bot
i. Command-and-control Functionality

The defining characteristic of bots is the remote
control mechanism, by which we can distinguish bots
from conventional viruses and worms. And we usually
call it "command and control", C&C for short.
Command-and control functionality enables bots to
request, send, interpret commands and return results.

o Request: a bot asks another bot for command
information. The bot has to know whom it should
request, and we call the destination "predecessor".

Mail: asianjournalzois@gmail.com

http://www.asianssr.org/

Asian Journal of Convergence in Technology

Issn !No.:2350-1146, 1. F-2.71

o Send: a bot send command information to

another bot. The bot has to know to whom it should

send command information, and we call the

destination "successor”.

o Interpret: command information is interpreted as

concrete instructions which bots can execute.

o Return: a bot sends execution results to its

controller.

Peer-to-peer Functionality

The defining characteristic of P2P botnets is the
peer-to peer communication style. Due to this
communication style, P2P botnets are more resilient
than centralized botnets.

Peer-to-peer functionality enables bots to construct
and maintenance an overlay network, to route and
locate, and to deal with joining, leaving and failure of
peers. Generally P2P communication in P2P botnets is
similar to that in common P2P applications, file-
sharing systems for example.

[2]. Features of P2P Bot
Different functionalities correspond to different services
for users. Features of a service consist of attributes including
protocol, version and patch, and configurations including
programs and parameters.
i. Command-and-control Features

C&C attributes consist of C&C-protocol, C&C-
version and C&C-patch. C&C configurations consist of
C&C programs and parameters. The later includes
predecessor-table, successor-table, commands, and
requests.

o Predecessor-table contains all predecessors a bot

knows.

o Successor-table contains all successors a bot

knows.

o Commands

information.

o Requests represent the set of request information.

ii. Peer-to-peer Features

P2P attributes consist of P2P -protocol, P2P -
version and P2P -patch. P2P configurations consist of
P2P programs and parameters. The later includes
boots-table and routing-table.

represent the set of command

o Boots-table contains all boots-peers a peer
knows. A peer joins in a P2P network by at least
one peer existing in the network, i.e. boots-peer.
The content of boots-table may vary from P2P
protocol to P2P protocol.

o Routing-table contains several nearest peers'
information. A peer asks these peers to route
queries and to locate resources. The same as boots-
table, the content of boots-table may be different
due to different P2P protocols.

I1l. KADEMLIA PROTOCOL
3.1. Introduction

WWW.Asianssr. org

Yolumesl, Issue 5

Kademlia is a distributed hash table (DHT) [21] for
decentralized peer-to-peer computer networks designed by
Petar Maymounkov and David Maziéres in 2002. It specifies
the structure of the network and the exchange of information
through node lookups. Kademlia nodes communicate among
themselves using UDP. A virtual or overlay network is formed
by the participant nodes. Each node is identified by a number
or node ID. The node ID serves not only as identification, but
the Kademlia algorithm uses the node ID to locate values
(usually file hashes or keywords). In fact, the node ID
provides a direct map to file hashes and that node stores
information on where to obtain the file or resource.

When searching for some value, the algorithm needs to
know the associated key and explores the network in several
steps. Each step will find nodes that are closer to the key until
the contacted node returns the value or no more closer nodes
are found. This is very efficient: Like many other DHTSs,
Kademlia contacts only O(logn) nodes during the search out of
a total of Ttnodes in the system.

Further advantages are found particularly in the
decentralized structure, which increases the resistance against
a denial of service attack. Even if a whole set of nodes is
flooded, this will have limited effect on network availability,
since the network will recover itself by knitting the network
around these "holes".

Kademlia is a communications protocol for peer-to-peer
networks. It is one of many versions of a DHT, a Distributed
Hash Table.

3.2. The Node

A Kademlia network consists of a number of cooperating
nodes that communicate with one another and store
information for one another. Each node has a nodelD, a quasi-
unique binary number that identifies it in the network.

Within the network, a block of data, a value, can also be
associated with a binary number of the same fixed length B,
the value's key.

A node needing a value searches for it at the nodes it
considers closest to the key. A node needing to save a value
stores it at the nodes it considers closest to the key associated
with the

3.2.1. NodelD

NodelDs are binary numbers of length B = 160 bits. In
basic Kademlia, each node chooses its own ID by some
unspecified quasi-random procedure. It is important that
nodelDs be uniformly distributed; the network design relies
upon this.

While the protocol does not mandate this, there are
possible advantages to the node's using the same nodelD
whenever it joins the network, rather than generating a new,
session-specific nodelD.

3.2.2. Keys

Mail: asianjournalzois@gmail.com

http://www.asianssr.org/

Asian Journal of Convergence in Technology
Issn !No.:2350-1146, 1. F-2.71

Data being stored in or retrieved from a Kademlia network
must also have a key of length B. These keys should also be
uniformly distributed. There are several ways to guarantee
this; the most common is to take a hash, such as the 160 bit
SHAZ1 digest, of the value.

3.2.3. Distance: the Kademlia Metric

Kademlia's operations are based upon the use of exclusive
OR, XOR, as a metric. The distance between any two keys or
nodelDs x and y is defined as

distance(x, y) = x"y

Where ™ represents the XOR operator. The result is
obtained by taking the byte wise exclusive OR of each byte of
the operands.

Kademlia follows Pastry in interpreting keys (including
nodelDs) as bigendian numbers. This means that the low order
byte in the byte array representing the key is the most
significant byte and so if two keys are close together then the
low order bytes in the distance array will be zero.

3.2.4. The K-Bucket

A Kademlia node organizes its contacts, other nodes
known to it, in buckets which hold a maximum of k contacts.
These are known as k-buckets.

The buckets are organized by the distance between the
node and the contacts in the bucket. Specifically, for bucket j,
where 0 <= j <k, we are guaranteed that

2"j <= distance(node, contact) < 2/(j+1)

Given the very large address space, this means that bucket
zero has only one possible member, the key which differs
from the nodelD only in the high order bit, and for all practical
purposes is never populated, except perhaps in testing. On
other hand, if nodelDs are evenly distributed, it is very likely
that half of all nodes will lie in the range of bucket B-1 = 159.

3.2.4.1. Bucket Size

The Kademlia paper says that k is set to a value such that it
is very unlikely that in a large network all contacts in any one
bucket will have disappeared within an hour. Anyone
attempting to calculate this probability should take into
consideration policies that lead to long-lived contacts being
kept in the table in preference to more recent contacts.

3.2.4.2. Contacts
A contact is at least a triple:

e the bigendian nodelD for the other node
e its IP address
e its UDP port address

The IP address and port address should also be treated as
bigendian numbers. Kademlia's designers do not appear to
have taken into consideration the use of IPv6 addresses or
TCP/IP instead of UDP or the possibility of a Kademlia node
having multiple IP addresses.

WWW.Asianssr. org

Yolumesl, Issue 5

3.2.4.3. Sorting

Within buckets contacts are sorted by the time of the most
recent communication, with those which have most recently
communicated at the end of the list and those which have least
recently communicated at the front, regardless of whether the
node or the contact initiated the sequence of messages.

3.2.4.4. Updates

Whenever a node receives a communication from another,
it updates the corresponding bucket. If the contact already
exists, it is moved to the end of the bucket. Otherwise, if the
bucket is not full, the new contact is added at the end. If the
bucket is full, the node pings the contact at the head of the
bucket's list. If that least recently seen contact fails to respond
in an (unspecified) reasonable time, it is dropped from the list,
and the new contact is added at the tail. Otherwise the new
contact is ignored for bucket updating purposes.

In a large, busy network, it is possible that while a node is
waiting for a reply from the contact at the head of the list there
will be another communication from a contact not in the
bucket. This is most likely for bucket B-1 = 159, which is
responsible for roughly half of the nodes in the network.
Behaviour in this case is unspecified and seems likely to
provide an opening for a DOS (Denial of Service) attack.

3.2.4.5. Rationale

Experience has shown that nodes tend to group into two
clearly distinguished categories, the transient and the long-
lived. This update policy gives strong preference to the long-
lived and so promotes network stability. It also provides a
degree of protection from certain types of denial of service
(DOS) attacks, including, possibly, Sybil attacks, discussed
below [20].

3.3. Protocol Messages

The original Kademlia paper, says that the Kademlia
protocol consists of four remote procedure calls ("RPCs") but
then goes on to specify procedures that must be followed in
executing these as well as certain other protocols. It seems
best to add these procedures and other protocols to what we
call here the Kademlia protocol.

Kademlia has four messages.
e PING — used to verify that a node is still alive.
e STORE — stores a (key, value) pair in one node.

e FIND_NODE — the recipient of the request will
return the k nodes in his own buckets that are the closest ones
to the requested key.

e FIND_VALUE — Same as FIND_NODE, but if the
recipient of the request has the requested key in its store, it
will return the corresponding value.

Each RPC message includes a random value from the
initiator. This ensures that when the response is received it
corresponds to the request previously sent.

Mail: asianjournalzois@gmail.com

http://www.asianssr.org/

Asian Journal of Convergence in Technology

Issn !No.:2350-1146, 1. F-2.71

3.3.1. PING

This RPC involves one node sending a PING message to
another, which presumably replies with a PONG.

This has a two-fold effect: the recipient of the PING must
update the bucket corresponding to the sender; and, if there is
a reply, the sender must update the bucket appropriate to the
recipient.

All RPC packets are required to carry an RPC identifier
assigned by the sender and echoed in the reply. This is a quasi-
random number of length B (160 bits).

Implementations using shorter message identifiers must
consider the birthday paradox, which in effect makes the
probability of a collision depend upon half the number of bits
in the identifier. For example, a 32-bit RPC identifier would
yield a probability of collision proportional to 27-16, an
uncomfortably small number in a busy network. If the
identifiers are initialized to zero or are generated by the same
random number generator with the same seed, the probability
will be very high indeed.

It must be possible to piggyback PINGs onto RPC replies
to force or permit the originator, the sender of the RPC, to
provide additional information to its recipient. This might be a
different IP address or a preferred protocol for future
communications.

3.3.2. STORE

The sender of the STORE RPC provides a key and a block
of data and requires that the recipient store the data and make
it available for later retrieval by that key. This is a primitive
operation, not an iterative one.

While this is not formally specified, it is clear that the
initial STORE message must contain in addition to the
message ID at least the data to be stored (including its length)
and the associated key. As the transport may be UDP, the
message needs to also contain at least the nodelD of the
sender, and the reply the nodelD of the recipient. The reply to
any RPC should also contain an indication of the result of the
operation. For example, in a STORE while no maximum data
length has been specified, it is clearly possible that the
receiver might not be able to store the data, either because of
lack of space or because of an 1/0O error.

3.3.3. FIND_NODE

The FIND_NODE RPC includes a 160-bit key. The
recipient of the RPC returns up to k triples (IP address, port,
nodelD) for the contacts that it knows to be closest to the key.

The recipient must return k triples if at all possible. It may
only return fewer than k if it is returning all of the contacts
that it has knowledge of. This is a primitive operation, not an
iterative one.

The name of this RPC is misleading. Even if the key to the
RPC is the nodelD of an existing contact or indeed if it is the
nodelD of the recipient itself, the recipient is still required to

WWW.Asianssr. org

Yolumesl, Issue 5

return k triples. A more descriptive name would be
FIND_CLOSE_NODES.

The recipient of a FIND_NODE should never return a
triple containing the nodelD of the requestor. If the requestor
does receive such a triple, it should discard it. A node must
never put its own nodelD into a bucket as a contact.

3.3.4. FIND_VALUE

A FIND_VALUE RPC includes a B=160-bit key. If a
corresponding value is present on the recipient, the associated
data is returned. Otherwise the RPC is equivalent to a
FIND_NODE and a set of k triples is returned. This is a
primitive operation, not an iterative one [19] [20].

3.4. Possible Problems with Kademlia: The Sybil
Attack

A paper by John Douceur, describes a network attack in
which attackers select nodelDs whose values enable them to
position themselves in the network in patterns optimal for
disrupting operations. For example, to remove a data item
from the network, attackers might cluster around its key,
accept any attempts to store the key/value pair, but never
return the value when presented with the key.

A Sybil variation is the Spartacus attack, where an attacker
joins the network claiming to have the same nodelD as
another member. As specified, Kademlia has no defence. In
particular, a long-lived node can always steal a short-lived
node’s nodelD.

Douceur's solution is a requirement that all nodes get their
nodelDs from a central server which is responsible at least for
making sure that the distribution of nodelDs is even.

A weaker solution would be to require that nodelDs be
derived from the node's network address or some other quasi-
unique value [20].

Acknowledgment

With all respect and gratitude, | would like to thank all
people who have helped me directly or indirectly for the
completion of this paper.

I express our heartily gratitude towards Mr. M. S.
Chaudhary for guiding me to understand the work
conceptually and also for his constant encouragement to
complete this paper on "P2P Botnet Prevention with the Help
of Sybil Attack"

| also express our thanks to Prof. T. J. Parvat Head of
department of Computer Engineering & PG Co-ordinator Prof.
M. S. Chaudhary for providing necessary information and
required resources.

With deep sense of gratitude | thank to our Principal Dr.
M. S. Gaikwad and Management of the SIT, Lonavala for
providing all necessary facilities and their constant
encouragement and support.

Mail: asianjournalzois@gmail.com

http://www.asianssr.org/

Asian Journal of Convergence in Technology
Issn !No.:2350-1146, 1. F-2.71

Last but not the least we thanks to all the Teaching &
Non-teaching staff members of Computer Engineering
Department for providing necessary information and
required resources.

I am ending this acknowledgement with deep
indebtedness to my friends who have helped me.

References

[1] Abhijeet B. Potey, Prof.Anjali B.Raut “Defending Sybil Using Social
Network™, International Journal of Engineering and Computer
Science (IJECS) Volume 2 Issue, Page No. 196-199, 2 Feb 2013.

[2] “Botnets - the evolving nature of adversaries, tactics, techniques and
procedures” Georgia Tech Cyber Security Summit, 2011, Pages 6-7.

[3] Joseph Massi, Sudhir Panda, Girish Rajappa, Senthil Selvaraj and
Swapana Revankar “Botnet Detection and Mitigation” Proceedings of
Student-Faculty Research Day, Pace University, 2010.

[4] Andrew White, Alan Tickle, and Andrew Clark “Overcoming
Reputation and Proof-of-Work Systems in Botnets” Fourth
international Conference on Network and System Security, 2010.

[5] Zhou Hangxia “Mitigating Peer-to-Peer Botnets by Sybil attacks”,
International Conference on Innovative ~ Computing and
Communication and Asia-Pacific Conference on Information
Technology and Ocean engineering © IEEE, 2010.

[6] Oliver Jetter, Jochen Dinger, and Hannes Hartenstein “Quantitative
Analysis of the Sybil Attack and Effective Sybil Resistance in Peer-
to-Peer Systems”, IEEE ICC proceedings, 2010.

[7] Junfeng Duan, Jian Jiao, Chunhe Xia, Shan Yao, and Xiaojian Li
“Descriptive Model of Peer-to-Peer Botnet Structures”, International
Conference on Educational and Information Technology (ICEIT),
2010.

[8] Ping Wang, Sherri Sparks, and Cliff C. Zou “An Advanced Hybrid
Peer-to-Peer Botnet”, IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING, VOL. 7, NO. 2, Pages 113-127,
APRIL-JUNE 2010.

[9] Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou “A Systematic
Study on Peer-to-Peer Botnets” IEEE, 2009.

[10] Carlton R. Davis, Jos’e M. Fernandez, and Stephen Neville
“Optimising Sybil Attacks against P2P-based Botnets”, 2009.

[11] Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou “A Systematic
Study on Peer-to-Peer Botnets” IEEE, 2009.

[12] Duc T. Ha, Guanhua Yan, Stephan Eidenbenz, and Hung Q. Ngo “On
the Effectiveness of Structural Detection and Defence Against P2P-
based Botnets”, 2009.

[13] Thibault Cholez, Isabelle Chrisment and Olivier Festor “Evaluation
of Sybil Attacks Protection Schemes in KAD”, published in 3rd
International Conference on Autonomous Infrastructure, Management
and Security — AIMS, 2009.

[14] Robert F. Erbacher, Adele Cutler, Pranab Banerjee, and Jim Marshall
“A Multi-Layered Approach to Botnet Detection”, 2008.

[15] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and
Felix Freiling “Measurements and Mitigation of Peer-to-Peer-based
Botnets: A Case Study on Storm Worm”, 2008.

[16] Reinier Schoof and Ralph Koning “Detecting peer-to-peer botnets”,
2007.

[17] Antti Nummipuro “Detecting P2P-Controlled Bots on the Host”
Seminar on Network security, 2007.

[18] Daniel Stutzbach and Reza Rejaie “Improving Lookup Performance
over a Widely-Deployed DHT”, infocom, 2006.

[19] “Kademlia: A Design Specification”, the XLattice Project, 2003-
2006.

WWW.Asianssr. org

Yolumesl, Issue 5

[20] John R. Douceur “The Sybil Attack”, in the proceeding of first
international workshop on peer-to-peer systems (IPTPS), Pages 251-
256, 2002.

[21] Petar Maymounkov and David Mazi'eres “Kademlia: A Peer-to-peer
Information System Based on the XOR Metric”.

[22] Benedikt Westermann, Andriy Panchenko, and Lexi Pimenidis “A
Kademlia-based Node Lookup System for Anonymization
Networks”.

[23] Isabel Pita and Adrian Riesco “Specifying and Analysing the
Kademlia Protocol in Maude*”.

[24] Manoj Rameshchandra Thakur “Distributed and Cooperative
Approach to Botnet Detection Using Gossip Protocol”.

[25] Moritz Steiner, Taoufik En-Najjary, and Emst W. Biersack
“Exploiting KAD: Possible Uses and Misuses”.

[26] M. Patrick Collins, Timothy J. Shimeall, Sidney Faber, Jeff Janies,
Rhiannon Weaver, and Markus De Shon “Using uncleanliness to
predict future botnet addresses”.

[27] Kademlia - Wikipedia, the free encyclopedia.
[28] Distributed hash table - Wikipedia, the free encyclopedia.

Mail: asianjournalzois@gmail.com

http://www.asianssr.org/

