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Abstract-The Sorting Algorithm proposed by C.A.R Hoare  

in 1961 by name Quick sort,  which is popularly known for 

being the fastest sorting algorithm. Quick sort  is still being 

practiced in the field of computers systems and its applications. 

The Algorithm whose efficiency to sort random data set is 

represented in asymptotic notation as  O(n log2 n) and when 

quick sort algorithm has a input data set which is already 

Ordered then it takes  a quadratic execution time which is 

considered as a worst case performance and this behavior is 

represented in asymptotic notation as O(n2). The  worst case 

performance is due the scan over heads which occur over the 

pre-sorted data set, in other words the partitioning gets skewed 

due to recursive calls and hence results in a quadratic 

complexity. This research paper presents an algorithm  which 

minimizes a worst case execution time making it linear when 

the input list is in non-decreasing order. The paper describes 

how the improvements are accommodated in the existing quick 

sort. A priori analysis of  proposed algorithm for different cases 

is made along with a proof of  correctness. Later the algorithm 

is verified for its correctness and asymptotic performance. The 

algorithm is implemented using C++ and also we have 

compared with other popular quick-sort version. 

Keywords-Worst case,  Presorted data, Linear time 

complexity, Early exit, part_no, Aorder status flag, Qwimb sort. 

I. INTRODUCTION 

Problem Solving is one of the prime activity involved in 
the life cycle of human being and tools were the aids 
produced by him from the nature, starting from stone, sticks, 
fire,until it progressed to machinery and finally computers 
and artificial intelligence. As we know that a computer works 
on basis of Von Neumann's concept which is nothing but 
stored program which works to interface humans for problem 
solving. The generic name for a program is an Algorithm. An 
Algorithm is step-by-step procedure for solving a problem in 
a finite amount of time. Among the different types of 
algorithms, Sorting is frequently and widely used. In a 
computer, a sorting algorithm is that which puts elements of 
a list in a certain order. The most-used orders are numerical 
order and lexicographical order. Efficient sorting is important 
for optimizing the use of other algorithms (such as search 
and merge algorithms) that require sorted lists to work 
correctly; it is also often useful for canonicalizing data and 
for producing human-readable output. Mathematically,  
sorting is defined in [3] as  as a list of numbers, 
A=(a1,a2,a3......an)  which on   permutation (reordering)  
results as, A=(a’1,a’2,a’3......a’n) of the input sequence such 
that a’1  <=a’2, <=a’3......<=a’n . The sequences are typically 
stored in arrays which are consecutive storage locations in 
the computer memory, the numbers are  also referred to as 
the keys . 

Since the dawn of computing, the Sorting problem has 
attracted a great deal of research, perhaps due to the 

complexity of solving it efficiently despite its simple, 
familiar statement. For example, Bubble sort was analyzed as 
early as 1956. later other algorithms like selection sort, 
insertion sort, shell sort, radix sort, and many others methods 
were introduced. Among these the  popular once which are 
frequently used in system softwares and application software 
are merge sort, quick sort, insertion sort, which we term as 
popular sorting algorithms. Due to fast evolution in computer 
technology, although many consider sorting as  a solved 
problem, useful new sorting algorithms are still being 
invented. Among the popular sorting algorithms Quicksort is 
the fastest one used in real world sorting problems. Quicksort 
uses a divide and conquer technique for sorting the given 
data file. We find  sufficient work with respect to partitioning 
the unsorted data, selection of the Pivot element which 
divides the list and also regarding finding size of sub files. 
But fever  work is found regarding improving the worst-case 
behaviors of Quick-sort algorithm which has been focused in 
this research study. In this paper we have presented a version 
of Quick-sort named as Qwimb sort which improves the 
worst case of the Hoare’s Quick-sort [5] and the later Quick 
sort version found in[23]. 

II. QUICK-SORT ALGORITHM 

Quick Sort is an algorithm based on the Divide and 
Conquer paradigm that selects a pivot element (in our 
example it is the left most element in the list) and reorders 
the given list in such a way that all elements smaller to it are 
on left side and those bigger than pivot is on the right side. 
Further  the sub lists are recursively sorted until the list gets 
completely sorted as shown in Figure 1. Also you observe 
the Pivot element occupying its position as part of list being 
sorted. The time complexity of this algorithm is O (n log n) 
on un-ordered data set due to partitioning into two parts, 
along with two scans in opposite directions. 

 

Fig. 1. shows partitioning using leftmost element as Pivot 

A. Analysis of Quick-sort 

The total time taken to re-arrange the array as described 
in the above section always takes  O (n) or αn where α is 
some constant needed to execute in every partition. Let us 
suppose that the pivot we just choose has divided the array 
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into two parts: one of size k and the other of size n − k. 
Notice that both these parts still need to be sorted. This gives 
us the following relation: 

T (n) = T (k) + T (n − k) + α n      (1.1)     
where T (n) refers to the time taken by the algorithm to 

sort n elements and  α is the constant computation time for 
processing n elements to partition the list into k and n-k parts. 

In order to analyze for the worst case, consider when 
pivot is the least element of the array (input array is in 
ascending order), so that we have k = 1 and n − k = n – 1 in 
(1.1). In such a case, we have: 

T (n) = T (1) + T (n − 1) + α n         

by solving the recurrence as follows: 

= T (n − i) + iT (1) + α. ∑ (𝑛 − 𝑗)𝑖−1
𝑗=0       (1.2)     

Now clearly such a recurrence can only go on until i = n 

− 1 (because otherwise n – 1 would be less than 1). So, 

substitute i = n − 1 in (1.2), which gives us: 

T (n) = T (1) + (n − 1)T(1) + α     ∑ (𝑛 − 𝑗)𝑛−2
𝑗=0  

on further simplification we arrive as shown below, 

T (n)   = nT (1) + α (n (n − 2) − (n − 2) (n − 1)/2)  

 which is O (n2).This is the worst case of quick-sort, 
which happens when the pivot we picked turns out to be the 
least element of the array to be sorted, in every step (i.e. in 
every recursive call). A similar situation will also occur if the 
pivot happens to be the largest element of the array to be 
sorted. 

The best case of quick sort occurs when the pivot we 
pick happens to divide the array into two exactly equal parts, 
in every step. Thus we have k = n/2 and n−k = n/2 in 
equation (1.1) for the original array of size n. 

Consider, therefore, the recurrence: 

T (n) = 2 T (n/2) + α n          (1.3) 

= 2 (2T (n/4) + α n/2) + α n 

(Note: T (n/2) = 2T (n/4) + α n/2 by just substituting n/2 for 

n in  (1.3) 

= 22 T (n/4) + 2 α n (By simplifying and grouping terms 

together). 

= 22(2 T (n/8) + α n/4) + 2 α n 

= 23T (n/8) + 3 α n  

= 2kT (n/2k) + k α n (Continuing likewise till the kth step) 

Notice that this recurrence will continue only until n = 2k 
(otherwise we have n/2k < 1), i.e.  until k = log n. Thus, by 
putting k = log n, we have the following equation: 

T (n) = n T (1) + α n log n,  

which is O (n log n). This is the best case for quick sort. 

It also turns out that in the average case (over all 

possible pivot configurations), quick sort has a time 

complexity of O (n log n), the proof of which is commonly 

found in [1,3,4]. 

III. LITERATURE REVIEW ON QUICK SORT ALGORITHM 

Thomas H. Cormen et. al. in  [3] have quoted that Quick 
sort  takes Quadratic time O (n2) in the worst case, spends a 
lot of time on the sorted or almost sorted data. It performs 
about n2/2 comparisons even on nearly sorted data found 
in[23], but swap count is low for sorted or almost sorted 
input. Mark Allan Weiss in [4] has also stated that quick sort 
has O(n2) worst case performance. Howrowitz et al in [1] 
have said that, a possible input on which quick sort displays 
worst case behavior is one in which  the elements are already 
in order. 

Almost all the authors of Algorithm books and research 
papers showing quick sort analysis, have agreed that quick 
sort perform no better than O(n2) in case of ordered input. 
With all the above survey and many others references the 
theoreticians and practitioners have considered Quick sort 
worst case to be classified in asymptotic class O (n2). But it 
is found that there are some works which have encouraged to 
take up the study to improve in the worst case. A detail 
literature survey done with respect to Quick sort algorithm is 
presented in following paragraph before we present the 
design and implementation of our version Qwimb sort.. 

1961 C.A.R Hoare founded and implemented Quick sort 
algorithm as found in[5]. It was first written in Algol 60, 
which  sorts the array in the random-access store of a 
computer, ie., a in-place sort. He also said that no extra space 
is required. The Pivot is randomly selected using a random 
number generator. In [6] Hoare has also indicated and 
described some places of refinement which can lead towards 
optimization. He analyzed his algorithm over random data 
and stated that the minimum number of comparisons 
required to achieve the reduction in entropy is log2N! 
≈Nlog2N. The average number of comparisons required by 
quick sort is greater then the theoretical minimum by a factor  
2loge2  ≈ 1.4. He further suggested that the factor could be 
reduced by choosing Pivot as the median of a small random 
sample of the items in the segment. He further described the 
inner loop of partition could be optimized using a machine 
instruction to exchange elements. Mathematical analysis of 
algorithm was done using rules of inference. He also showed 
Merge sort running slower than Quick sort. The Function 
quicksort() of Algorithm 64  is recursive and its partition() 
function is iterative. Hoare  did not speak about worst case 
and equal keys. He also claimed that no extra memory is 
needed. He showed a road-map for research in quick sort 
Algorithm. Later the claim made by Hoare was proved to be 
incorrect by B. Randell & J. Russell in [7].They showed that 
extra space was because of activation record needed by 
recursion. They  also mentioned in their technical 
correspondence that no changes are required to quick sort 
and hence it works satisfactorily. Finally promoted Hoare’s 
work. 

Robert Sedgewick in his thesis titled “Quick sort” [14] 
which received outstanding thesis award under supervision 
of  D. E Knuth has paid special  attention to methods of 
mathematical analysis, which are used to demonstrate the 
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practical utility of the quick sort algorithm. He has developed 
an exact and efficient form of quick sort, further the same is 
derived for the average best case and  worst case running 
times. Following improvements were made in Sedgewick’s 
quick sort: 

1. Pivot is Median of three elements.  

2. To use insertion sort method for sort small 
subfile(for < 10 element). 

3. Loop unwrapping  is applied by using assembly 
language. This was analyzed and found optimal. 

4. A  analytical study of equal key is thoroughly done 
with implementation and  testing.  

Robert Sedgewick’s research work has showcased  a 
complete analysis  especially from the point of priori 
estimates and the same was verified in his practical 
measurement as found in [16]. His experiments showed that 
quick sort is up-to twice  fast then its competitors. It was told 
that small files to be avoided by being in recursion. Small 
file can use insertion sort. He also clearly says that, quick 
sort needs O(n2) in worst case. Practical measurement was 
less shown by the author. Robert Sedgewick made a unique 
way of study. 

In November 1980 C.R Cook and D  Jin Kim in [17] 
designed a Best Sorting Algorithm for Nearly Sorted Lists. 
The algorithm which is a hybrid version of quick sort, a 
combination of straight insertion sort, quicker sort and merge 
sort. The new algorithm performed well and showed 
improvement in sorting twice, when compared with same 
input with straight insertion sort ,shell sort, quick sort and 
heapsort. The author tested for sample size of 50, 800,200, 
500, 1000, 2000 elements.  

In April 1983, D. Motzkin in [18] presented a Algorithm 
which he called Meansort is based on quick sort. The 
Algorithm used a  special technique at every partition in 
finding the Pivot. The algorithm name is based on the Mean 
value used as Pivot. The algorithm have improvements over 
the average cases. The algorithm was implemented in pascal 
language. Mean sort is considered improvement over 
standard quick sort. It is efficient even if repeating keys are 
present. Efficiency was measured based on interchanges 
comparison and particular stops. Means sort showed 
considerable improvement over quick sort. 

In April 1984, an article found in  [19]  “ How to sort 
“ by Jon L Bentley, which showed in his experiments that the 
system sort, that is, qsort in UNIX Operating System was 
fast  but performed a bit slow then the quick sort because it 
has to be called, qsort is version of quick sort which is made 
part of Unix system and hence used as a command to sort 
files. He also mentioned that System commands should 
fulfill the user needs and not all systems have the system sort 
command. The  author did not mentioned about worst case of 
quick sort. 

In 1985, Roger L. Wainwright in [20] showed a class of 
sorting algorithms based on quick sort. Bsort a variation of 
quick sort combines the interchange technique used in 
bubble sort with quick sort. The  algorithm improved the 
average behavior of quick sort and claimed that the worst 
case situation of comparison for sorted or nearly sorted lists 
works best leading to removal of worst case ie., O(n2), which 
later was proved incorrect by a technical correspondence 

in [21]. it showed Bsort failed to be O(n) for a simple data 
set 2,4,6,8….n-2, 1,2,3….n-3 instead it took O(n2) time.  

In 1987, Roger L. Wainwright in [22] modified Quick 
sort algorithms with an early exit for sorted subfiles. He also 
said that the improvements to quick sort have been made in 
the following areas:  

1. Determining a better pivot value,  

2. Considering the size of subfiles and  

3. Schemes of partitioning the files. 

Despite improvements the worst case still remains when 
a file is nearly or completely sorted, which can be assumed 
as a 4th area. A version of quick sort called qsorte is 
presented that provides an early exit for sorted subfiles. He 
Tested on random files, sorted and nearly sorted and reverse 
sorted files. Results of quick sort, Quicker sort, Bsort, qsort 
are exhibited in experiments. qsorte perform good as quick 
sort for random files. Author has implemented using pascal 
language. Author says we should no longer refer to the quick 
sort algorithm as having a worst case behavior for sorted 
subfiles. He also showed that there are cases for which Quick 
sort has a worst complexity of O(n2). 

In 1993, Jon L Bentley and M Douglas McIL Roy in [23] 
built a new qsort function for ‘C’ library based on Scowen’s 
quicker sort choosing a  partition elements by new scheme. 
Hoare’s version for a case of 2n integers 1 2 3 …n,n…..3 2 1 
took n2  comparisons to sort. The Authors have engineered 
the qsort version with needed improvements. The paper is 
fully supported by pioneers in the field of sorting. In this 
paper Program 7 used MACROS to improve its 
performances  and used insertion sort for small sub arrays. 
Program 7 proved to be best. The authors have mentioned 
that, if worst case performance is important, Quicksort is the 
wrong algorithm. 

In 2007, in the paper “Quicksort: A historical perspective 
and empirical study” [25] Laila khreisat studied and  
compared the Quick sort variants and the new algorithm of 
recent times. The study made was in terms of comparison 
performed and the running times on reverse order, already 
ordered and randomly generated orders. She tested on 
various  random integers data set from N=3000 to 500000. 
The performances of all the variants are really interesting 

Laila khreisat in 2018, presented Introsort found in [26] 
which is combination of qsorte and heapsort. When qsorte 
stops for stack overflow the sorting process is continued by 
heapsort. The paper has no information about worst case of 
O(n2) being eliminated. 

In 2015, the research work in [28] showed the design and 
implementation of a modified version of quick sort algorithm 
named Quicksort_wmb, in which the algorithm had an early 
exit when ever it encountered the input array as presorted, 
This algorithm worked well for ordered data set (presorted  
as ascending or descending) and took linear time O(n) 
instead of quadratic O(n2). In recent research it is realized 
that the early exit leaves random arrays unsorted which had 
the first element as the least value. When the leftmost 
element in the input arrau is considered as pivot element.  

A recent research of 2020 found in [29] by Bal, Aditi 
Basu and Chakraborty, Soubhik titled “An Experimental 
Study on a Modified Version of Quicksort” used the version 
quicksort_wmb published in [27] to experiment over various 
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continuous and discrete probability distributions and  
measured  the performance in terms of the number of 
comparisons the algorithm makes to sort the whole array. A 
number of common probability distributions having both 
continuous and discrete-were simulated to constitute the 
elements of a random unsorted list of numbers. The  
modified version quicksort_wmb  was applied on these 
arrays to sort the numbers. The results obtained were very 
interesting. The continuous distributions were sorted faster 
than the discrete ones by the algorithm, the reason for which, 
after investigation, was found to be the existence of ties in 
discrete distributions, thus providing an evidence that the 
version of quicksort is sensitive to ties. The sensitivity of 
quicksort_wmb to ties is not new. The interesting thing is 
that the sensitivity to ties remains irrespective of the 
improvement. 

Finally as a summary of above detail survey it is 
observed that sufficient work has been done to improve  
speed for  average cases especially in three areas, like 
determining pivot. considering the size of sub-files and 
schemes of partitioning, but as it is stated by Wainqright  L.R  
in [22], a fourth area which is improvement to Worst case 
need to considered for research. It is also seen that  O(n2) 
worst case of quick sort has not been improved much. 

IV. DESIGN OF QWIMB SORTING 

Mathematicians have contributed algorithmic analysis 
from info-theoretic view point, on the other side we, the 
algorithm engineers contribute from the angle of 
programming languages and the computer architecture. A 
responsibility that showers is to cope for the upcoming 
challenges to improve and provide a compatible code design 
keeping time efficiency as our objective. Quick sort is the 
only Algorithm which is a heart in this field. Also as 
mentioned by L. Wainwright in[22] where he suggested 
research regarding improvement in the worst case. Hence we 
considered Quick sort algorithm to analyze it and improve it 
especially in the worst case. 

A. Avoiding Worst case 

Practical implementations of quick sort often pick a pivot 
randomly from the list . This greatly reduces the chance of 
going into worst-case situation. This method of selecting 
pivot in random is seen to work excellently in practice but 
still much time is exploited by the randomizer [1] which 
matters the efficiency in execution. The other technique, 
which deterministically prevents the worst case from ever 
occurring, is to find the median of the array to be sorted each 
time, and use that as the pivot. The median can be found in 
linear time but that is saddled with a huge constant factor 
overhead, rendering it suboptimal for practical 
implementations [3].  

In the present research we shall show a very simple 
version which performs good and improves in the 
performance when the input array is already in ascending 
order. This variant has also sorted the cases shown in[21]. 
This variant which we call as qwimb sorting, we make the 
early exit on two conditions, we check status of two pointers 
along with a check of orderliness of input array. The next 
section shows the design in detail. 

A. Design Specification of Qwimb Sorting 

As we know that quick-sort algorithm is based on the 
Divide-and-Conquer paradigm that selects a pivot element 

and reorders the given list in such a way that all elements 
smaller or equal to the Pivot are on one side and those bigger 
than it are on the other. Thus the sub lists are recursively 
sorted until the whole list gets completely sorted, also 
explained in section II when ordered input is considered, we 
need to perform best case, that is, in linear time. We have 
considered the first element of the array or list as the Pivot 
element. 

To make this to happen we consider the leftmost element 
as the pivot. We have  considered three global integer 
variables,   no_part and Aorder  which are initialized to 
zero, further the decision to early exit from the quick sort is 
made when the respective values of global variables 
ie.,no_part and Aorder  equals to 1 and recursion is avoided 
later on. The global variable no_part counts the number of 
partitions  made in each execution of quick sort, Aorder (set 
to 1) is an indicator when the array is encountered to be in 
ascending order. 

Aorder is set to value 1 in the partition function when i=1 
and j=0,  that is i does not get incremented further as 
key>=a[i]  becomes false  in the statement                      
do{i++;}while(key>=a[i]); (do- while is executed only once), 
where as key<a[j] is true until  j become 0 after n executions 
of  the statement do{j--;}while(key<a[j]); (until key=a[j]). As 
shown in Figure 2 in case of ascending order input we can 
make a early exit.  

 

Fig. 2. shows the Position of index i & j at the end of first partition when 

the input array is in ascending order 

Further the above changes when applied in Quicksort it 
will fail to sort the random input array which has the first 
element as the lowest among the array elements. In other 
words  when the Pivot (leftmost element) is the least 
amongst all elements of input array. To avoid such cases, we 
add a small routine which checks for pre-sortedness and 
avoids an early exit because the Aorder flag shall not be set 
to 1, instead it continues to sort the random data set. This 
modification will take extra time of about O(n). The extra 
time is taken in case the array is presorted or if the element is 
the smallest element for the other case, otherwise it  runs 
normally as the Hoare’s version does it. 

V. IMPLEMENTATION  QWIMB SORTING 

With respect to the study made in[28,30], we have 
selected C++ programming language to implement Qwimb 
sorting as it best suits being a general  purpose programming 
language. C++ has exhibited the behaviors of sorting 
algorithms as per the priori estimates and  priori analysis 
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found in[1,30]. The following sections shows the different 
segments of the C++ code implementation. 

A. Global Declarations 

The Global declarations as shown in Table 1 includes the 
preprocessor statements which are basically needed for input 
and output operations. The global static identifier no_part is 
used to count the number of partitions made during the 
sorting. Aorder is a global and is used as a status flag which 
is set when we find that the array is Presorted in Ascending 
order. 

B. Aordered  Function 

The Aordered function in Table 2 scans from left most 
element of array and returns a boolean value True, if the 
array of input numbers are already in ascending order else a 
False is returned when it finds a element which is greater 
than  the consecutive next number in the array. 

C. Qwimb Recursive Function 

The Qwimb function as shown in Table 3 recursively 
sorts the input array by calling partition_iwmb function  
given in Table 4 to partition the array into two with respect to 
the pivot element. The Qwimb function exits from the 
recursion when it finds the array to be in Ascending order 
with the help of partition count and  Aorder flag status. 

D. Partition_iwmb Function 

The  partition_iwmb function as shown in Table 4 assigns 
the first element as the pivot and divides the array into two 
parts. During the first partition it checks if the array is 
already sorted with the help of the i and j index values and 
the boolean value returned by Aordered function and sets the 
Aorder flag. 

TABLE I.  GLOBAL DECLARATION FOR C++ CODE 

Line No. Statements 

1. #include <cstdlib> 

2. using namespace std; 

3. static int no_part=0;              //global Variable 

4. int Aorder=0;               //global Variables 

TABLE II.  C++ CODE OF AORDERED FUNCTION 

Line No. Statements 

1. bool Aordered(int a[],int n) 

2. {for(int i=0;i<n;++i)  

3. if (a[i]>a[i+1])return false; 

4. return true;   }   // end of Aordered 

TABLE III.  C++ CODE OF QWIMB  RECURSIVE FUNCTION 

Line No. Statements 

1. void Qwimb(int a[],int low,int high) 

2. {    int j; 

3.  if(low<high)      

4.       { j=partition_iwmb(a,low,high); 

5.          if (no_part= =1)  

6.            if(Aorder){cout<<”Aorder”<<endl;return;} 

7.          Qwimb(a.low,j-1);      

Line No. Statements 

8.          Qwimb(a,j+1,high); 

9.          }  // end of if compound statement  

10. }      // end of Qwimb 

TABLE IV.  C++ CODE OF PARTITION_IWMB  ITERATIVE 

FUNCTION 

Line No. Statements 

1. int partition_iwmb(int low,int high) 

2. {int key,i,j,temp; 

3.  no_part++; // Global variable counts partitions 

4.  key=a[low]; // assigning the pivot 

5.  i=low; j=high; // initializing left & right pointer 

6.  while(i<j) 

7.  {while(a[i] <= key) i++;// hunts element >  key 

8.     while(a[j] > key) j--;   // hunts element <= key 

9.      if(i<j){temp=a[i];a[i]=a[j]; a[j]=temp;} 

10.  }  // end of while 

11.  temp=a[low];a[low]=a[j];a[j]=temp; 

// swap j th element with pivot 

12.  if ((i==1) &&(j==0)&& Aordered(high,n)) 

Aorder =1; // set flag if Ascending 

13. return j; //returns the pivot }//end of partition_seek 

VI. POSTERIORI TESTING OF QWIMB SORTING 

The Qwimb code is tested for its correctness on different 

input samples of data under following 3 categories: 

1) Pseudo  Random generated  input numbers (Table 5) 

2) Ordered input numbers (Table 6 ) 

3) Special cases  of input numbers (Table 7) 

A. Program testing  for random numbers and Non-

decreasing numbers. 

The procedure to generate Pseudo Random 
Numbers(PRNs) and Non-decreasing array of numbers is 
described in [28], further set ups like set number ,size 
number and range were  initialized as per necessity in the 
driver segment of  C++ program. Also number of partitions 
made by the algorithm is also highlighted in the output. 
Partition counts gives a complexity indication, for example if 
number of partitions less than the size of input array to 1 
which indicates a average case complexity. Similarly when 
Number of partitions is 1, it indicates a best case complexity.  

TABLE V.  RESULT OBTAINED WITH PRNS  

Set 

No 

Range Input Array 

elements(size= 5) 

Sorted output 

elements 

No. of 

Partitions 

1 0-100 35 86 92 49 21   21 35 49 86 92                     3 

2 0-100 62 27 90 59 63    27 59 62 63 90     3 

3 0-100 26 40 26 72 36    26 26 36 40 72                   2 

4 0-100 11 68 67 29 82       11 29 67 68 82 3 

5 0-100 30 62 23 67 35    23 30 35 62 67 2 

(Random data input shows a O(nlogn) complexity)  
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TABLE VI.  TABLE 6. RESULT OBTAINED WITH NON-DECREASING 

NUMBERS  

Set 

No 

Range Input Array 

elements(size= 5) 

Sorted output 

elements 

No. of 

Partitions 

1 0 to13 :0 3 6 9 12    :0 3 6 9 12    1 

2 -4 to 0 -4 -3 -2 -1 0   -4 -3 -2 -1 0   1 

3 -1to3 -1 0 1 2 3 -1 0 1 2 3 1 

4 -8 to 0  -8 -6 -4 -2 0  -8 -6 -4 -2 0 1 

5 -12 to0  -12 -9 -6 -3 0             -12 -9 -6 -3 0            1 

(Ascending ordered input shows a O(n) complexity due to exit 

after first partition.) 

B. Program Testing on Special Input Cases 

The special cases are those which are considered in [21] 
and has shown quadratic complexity, which Qwimb has done  
in nlogn time complexity. The Table 7 shows the results 
when  special cases were considered. The results obtained for 
the above three categories  of data, shows the correctness of the 
algorithm 

TABLE VII.  RESULT OBTAINED FOR SPECIAL CASES INPUT  

Set 

No. 

Input Array elements Sorted Array elements No. of 

Partitions 

1. 4 9 5 6 10 2 8 3 7 1         1 2 3 4 5 6 7 8 9 10  6 

2. 1 2 3 4 5 4 3 2 1 0  0 1 1 2 2 3 3 4 4 5 6 

3. 1 2 3 4 5 1 2 3 4 5              1 1 2 2 3 3 4 4 5 5 6 

4. 1 2 3 4 5 0 501 0 502 0      0 0 0 1 2 3 4 5 501 502 6 

5. 2 4 6 8 10 9 7 5 3 1            1 2 3 4 5 6 7 8 9 10 6 

6. 2 8 4 12  10 1 3 5 7 9         1 2 3 4 5 7 8 9 10 12 5 

 

VII. ASYMPTOTIC PERFORMANCE MEASUREMENT OF 

QWIMB SORTING 

A. Experiment Set-up and Data Generation  

The Test bed  for conducting our experiments has  
Memory of 3.7 GiB, Intel® CoreTM i3-6006U CPU @ 
2.00GHz × 4 ,64-bit, 970.9 GB, Ubuntu 16.04 LTS. Coding 
Language used: linux system based compiler C++. The 
experiment Setup and data generation methods used are as 
specified in[28]. 

A. Performance Measurement  

Table 8 and Table 9 shows the results of executions on 
random and ordered(ascending order) samples respectively 
in our system which is achieved by some modification made 
in the code. The output shows the data sample size, time of 
execution for sorting in seconds and the number of partitions 
made by Qwimb() sorting algorithm. For simplicity we have 
considered output range from 100,000 samples to 10,00,000 
in steps of 100,000. It is observed from the output that we 
have fever partitions then the data sample size for random 
data  set, which indicates the time complexity of O (nlogn). 
Similarly when executed for non-decreasing data set we have 
only one partition which indicates the time complexity of Ө 
(n). 

 

 

TABLE VIII.  EXECUTION TIME FOR PRNS DATA SAMPLES  

Sample size Time (s) No_of_partitions 

100000 0.029839 67751 

200000 0.050392 135390 

300000 0.076136 203115 

400000 0.099895 271008 

500000 0.125967 338624 

600000 0.155165 406315 

700000 0.182476 474123 

800000 0.211204 541884 

900000 0.237766 609667 

1000000 0.266798 677134 

TABLE IX.  TABLE 10: EXECUTION TIME TAKEN FOR ORDERED DATA 

SAMPLES 

Sample size Time (s) No_of_partitions 

100000 0.002092 1 

200000 0.001457 1 

300000 0.002185 1 

400000 0.002922 1 

500000 0.003808 1 

600000 0.004548 1 

700000 0.005159 1 

800000 0.005913 1 

900000 0.00707 1 

1000000 0.007428 1 

Further, the experiments are conducted for different 
sorting algorithms like bubble sort, insertion sort, mergesort,   
Hoare’s quicksort and Bentley’s version ,along with our 
Qwimb sort for a comparative study. The sorting results on 
random data sets and ordered data sets are shown in tables 11 
and 12. In-order to attain the Asymptotic  behavior range we 
have considered the range of sample data set from 10000 to 
500,000 in steps of 10000 till 100000 and in steps of 100000 
onwards.   

B. Observations  

Considering the results shown in tables 11 & 12 listed 

below are the observations made: 

1) Asymptotic Behaviors of popular sorting Algorithms 
are clearly experimented and explained in the 
research published in [28] therefore we concentrate 
more on the performance of our version of quick sort 
(qwimb sorting). 
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2) In both tables 11 & 12 Bubble sort takes the 
maximum time to sort as it belongs to quadratic class 
of growth function.  

3) In table 11 for random data sets, Merge sort is slow 
when compare to Hoare’s Quick sort. It is also seen 
that qwimb sort is a bit slower (negligible 
quantity)than Hoare’s Quick sort. And as the optimal 
version QuickSort-3w by Robert Sedgewick and 
Bentley, found in [23] has performed faster. All of 
them belong to nlogn  class of growth function. 

4) In table 12 for ordered data sets, we see that 
execution time of both Hoare’s quick sort and 
Bubble sort are nearly the same, witnessing that both 
have a quadratic time complexity i.e O(n2) as per 
their behaviors exhibited and priori analysis found 
in[1,28]. 

5) We see that when considering the size n=500,000 the 
execution time for Hoare’s quicksort is 805.665 
seconds, QuickSort-3w is 389.347 seconds and that 
of Qwimb is 0.1344417 seconds witnessing the 
complexities of Hoare’s as quadratic, QuickSort-3w 
is far better than Hoare’s where as Qwimb 
performing in linear time. 

6) Finally, we see execution time of ordered data 
samples for Qwimb sorting  is linear and that with 
with respect to Hoare’s Quick sort and Bentley and 
Sedgewick’s taking Quadratic complexity. 

VIII. CONCLUSION 

As per the literature review it is really found that 
sufficient work is done in improving the speed in the average 
case of quick sort and fever is found to improve the speed of 
execution for the worst cases, which occurs when the input 
list is presorted. Though some work is done but still has 
some special cases for which it lacks to speed up. The 
Qwimb sorting which we have proposed handles the 
ascending data sets taken as input and sorts in linear time as 
it takes only one partition. Qwimb sorting has also performed 
a bit faster even in the average cases when we have randomly 
generated numbers as input data set. The work also shows 
the mathematical analysis of Qwimb sorting. Also, program 
testing and experiments conducted verifies the priori analysis 
made for program. Performance measurement considering 
large data set is done so that we observe asymptotic 
behaviors of algorithm. Presently the Qwimb algorithm 
considers for ascending ordered and pseudo-random 
generated data sets as input, in future the work can also give 
consideration for decreasing ordered data sets as input hence 
making it a sorting algorithm of time complexity O(nlogn). 

TABLE X.  SHOWS TIME TAKEN  FOR RANDOM DATA SAMPLES 

Input  Size 

Quick 

Sort 

time(s) 

Merge 

sort 

time(s) 

Bubble  

sort 

time(s) 

Quick 

Sort-3w 

time(s) 

Qwimb sort 

time(s) 

10000 0.010 0.003 0.403 0.00187 0.002352 

20000 0.019 0.006 1.779 0.004057 0.004272 

30000 0.013 0.009 4.102 0.006324 0.006825 

40000 0.012 0.012 7.438 0.008894 0.009194 

50000 0.013 0.016 11.844 0.011197 0.011541 

60000 0.015 0.018 17.129 0.013297 0.013772 

70000 0.020 0.022 23.586 0.015919 0.016738 

Input  Size 

Quick 

Sort 

time(s) 

Merge 

sort 

time(s) 

Bubble  

sort 

time(s) 

Quick 

Sort-3w 

time(s) 

Qwimb sort 

time(s) 

80000 0.021 0.025 31.208 0.018413 0.019033 

90000 0.024 0.029 39.373 0.020875 0.021631 

100000 0.027 0.032 48.755 0.023114 0.024318 

200000 0.0557  0.0697 195.58 0.048613 0.050938 

300000 0.0864  0.1024 442.68 0.074816 0.078249 

400000 0.1148 0.1385 786.60 0.100895 0.106358 

500000 0.1493 0.1764 1226.79 0.129536 0.134417 

TABLE XI.  SHOWS TIME TAKEN FOR  NON-DECREASING DATA SAMPLES 

Input  

Size 

Quick 

Sort 

time(s) 

Merge  

sort 

time(s) 

Bubble 

sort 

time(s) 

Quick 

Sort-3w 

time(s) 

Qwimb 

sort 

time(s) 

10000 0.32702 0.00194 0.34876 0.08701 7.6e-05 

20000 1.30349 0.00327 1.31706 0.13098 0.0001 

30000 2.92996 0.00527 2.98455 0.23124 0.0002 

40000 5.20315 0.00675 5.29415 0.29780 0.0002 

50000 8.13089 0.01015 8.52272 3.89705 0.0003 

60000 11.7192 0.01036 11.9832 5.61249 0.0004 

70000 15.9394 0.01218 16.2143 7.6635 0.0005 

80000 20.8201 0.01515 23.6834 9.9546 0.0005 

90000 26.4484 0.01590 28.5272 12.655 0.0006 

100000 32.6818 0.01901 33.6542 15.620 0.0007 

200000 134.072 0.03866 133.496 62.100 0.0014 

300000 295.033 0.05822 299.489 139.79 0.0022 

400000 529.134 0.07896 530.479 249.14 0.0038 

500000 809.665 0.09970 827.23 389.34 0.0043 
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