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Abstract-The Sorting Algorithm proposed by C.A.R Hoare
in 1961 by name Quick sort, which is popularly known for
being the fastest sorting algorithm. Quick sort is still being
practiced in the field of computers systems and its applications.
The Algorithm whose efficiency to sort random data set is
represented in asymptotic notation as O(n logz n) and when
quick sort algorithm has a input data set which is already
Ordered then it takes a quadratic execution time which is
considered as a worst case performance and this behavior is
represented in asymptotic notation as O(n?). The worst case
performance is due the scan over heads which occur over the
pre-sorted data set, in other words the partitioning gets skewed
due to recursive calls and hence results in a quadratic
complexity. This research paper presents an algorithm which
minimizes a worst case execution time making it linear when
the input list is in non-decreasing order. The paper describes
how the improvements are accommodated in the existing quick
sort. A priori analysis of proposed algorithm for different cases
is made along with a proof of correctness. Later the algorithm
is verified for its correctness and asymptotic performance. The
algorithm is implemented using C++ and also we have
compared with other popular quick-sort version.

Keywords-Worst  case, Presorted data, Linear time
complexity, Early exit, part_no, Aorder status flag, Qwimb sort.

|. INTRODUCTION

Problem Solving is one of the prime activity involved in
the life cycle of human being and tools were the aids
produced by him from the nature, starting from stone, sticks,
fire,until it progressed to machinery and finally computers
and artificial intelligence. As we know that a computer works
on basis of Von Neumann's concept which is nothing but
stored program which works to interface humans for problem
solving. The generic name for a program is an Algorithm. An
Algorithm is step-by-step procedure for solving a problem in
a finite amount of time. Among the different types of
algorithms, Sorting is frequently and widely used. In a
computer, a sorting algorithm is that which puts elements of
a list in a certain order. The most-used orders are numerical
order and lexicographical order. Efficient sorting is important
for optimizing the use of other algorithms (such as search
and merge algorithms) that require sorted lists to work
correctly; it is also often useful for canonicalizing data and
for producing human-readable output. Mathematically,
sorting is defined in [3] as as a list of numbers,
A=(a1,a2,as......an) which on permutation (reordering)
results as, A=(a’1,a’2,a’s......a"n) of the input sequence such
that a’y <=a’,, <=a’z......<=a’y . The sequences are typically
stored in arrays which are consecutive storage locations in
the computer memory, the numbers are also referred to as
the keys .

Since the dawn of computing, the Sorting problem has
attracted a great deal of research, perhaps due to the
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complexity of solving it efficiently despite its simple,
familiar statement. For example, Bubble sort was analyzed as
early as 1956. later other algorithms like selection sort,
insertion sort, shell sort, radix sort, and many others methods
were introduced. Among these the popular once which are
frequently used in system softwares and application software
are merge sort, quick sort, insertion sort, which we term as
popular sorting algorithms. Due to fast evolution in computer
technology, although many consider sorting as a solved
problem, useful new sorting algorithms are still being
invented. Among the popular sorting algorithms Quicksort is
the fastest one used in real world sorting problems. Quicksort
uses a divide and conquer technique for sorting the given
data file. We find sufficient work with respect to partitioning
the unsorted data, selection of the Pivot element which
divides the list and also regarding finding size of sub files.
But fever work is found regarding improving the worst-case
behaviors of Quick-sort algorithm which has been focused in
this research study. In this paper we have presented a version
of Quick-sort named as Qwimb sort which improves the
worst case of the Hoare’s Quick-sort [5] and the later Quick
sort version found in[23].

. QUICK-SORT ALGORITHM

Quick Sort is an algorithm based on the Divide and
Conquer paradigm that selects a pivot element (in our
example it is the left most element in the list) and reorders
the given list in such a way that all elements smaller to it are
on left side and those bigger than pivot is on the right side.
Further the sub lists are recursively sorted until the list gets
completely sorted as shown in Figure 1. Also you observe
the Pivot element occupying its position as part of list being
sorted. The time complexity of this algorithm is O (n log n)
on un-ordered data set due to partitioning into two parts,
along with two scans in opposite directions.

Input Array, select pivot=14 and rearrange elements

14 16 | 13|11 )15
Elements less than pivot(14) Elements greater than pivot(14)
12 1) 16 | 15 First Partiion
Elements loss than pivet(12) | Elements less than pivet(12} [Eleriants 955 than pivot{16He slements greater than pivet (16)
@ Secompatien
Iir| L . 14 i 16 Final Seetod Array

Fig. 1. shows partitioning using leftmost element as Pivot

A. Analysis of Quick-sort

The total time taken to re-arrange the array as described
in the above section always takes O (n) or an where o is
some constant needed to execute in every partition. Let us
suppose that the pivot we just choose has divided the array
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into two parts: one of size k and the other of size n — k.
Notice that both these parts still need to be sorted. This gives
us the following relation:

Tm) =Tk +Tn-k+an (1.1)

where T (n) refers to the time taken by the algorithm to
sort n elements and o is the constant computation time for

processing n elements to partition the list into k and n-k parts.

In order to analyze for the worst case, consider when
pivot is the least element of the array (input array is in
ascending order), so that we have k=1andn—k=n-11in
(1.1). In such a case, we have:

Tm)=T1)+T(n—1)+an

by solving the recurrence as follows:

=T (n—i)+iT (1) + 0. b)) (1.2)

Now clearly such a recurrence can only go on until i = n
— 1 (because otherwise n — 1 would be less than 1). So,
substitute i =n — 1 in (1.2), which gives us:

Tm)=T1)+(n-DT(1)+a Z}l;g(n )]

on further simplification we arrive as shown below,

Tm) =nT(1)+amm-2)—(n—2)(1n—1)/2)

which is O (n?).This is the worst case of quick-sort,
which happens when the pivot we picked turns out to be the
least element of the array to be sorted, in every step (i.e. in
every recursive call). A similar situation will also occur if the
pivot happens to be the largest element of the array to be
sorted.

The best case of quick sort occurs when the pivot we
pick happens to divide the array into two exactly equal parts,
in every step. Thus we have k = n/2 and n—k = n/2 in
equation (1.1) for the original array of size n.

Consider, therefore, the recurrence:

Tm)=2T@m2)+an (1.3)
=2 Q2T (n/4) +an/2)+on

(Note: T (n/2) = 2T (n/4) + a. n/2 by just substituting n/2 for
nin (1.3)

= 22T (n/4) + 2 a n (By simplifying and grouping terms
together).

=22T(n/8)+an/4)+2an

=2’T (n/8) +3 an

= 2¢T (n/2") + k o n (Continuing likewise till the k™ step)
Notice that this recurrence will continue only until n = 2k

(otherwise we have n/2 < 1), i.e. until k = log n. Thus, by
putting k = log n, we have the following equation:

Tm)=nT({)+anlogn,
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which is O (n log n). This is the best case for quick sort.

It also turns out that in the average case (over all
possible pivot configurations), quick sort has a time
complexity of O (n log n), the proof of which is commonly
found in [1,3,4].

[11. LITERATURE REVIEW ON QUICK SORT ALGORITHM

Thomas H. Cormen et. al. in [3] have quoted that Quick
sort takes Quadratic time O (n?) in the worst case, spends a
lot of time on the sorted or almost sorted data. It performs
about n?/2 comparisons even on nearly sorted data found
in[23], but swap count is low for sorted or almost sorted
input. Mark Allan Weiss in [4] has also stated that quick sort
has O(n?) worst case performance. Howrowitz et al in [1]
have said that, a possible input on which quick sort displays
worst case behavior is one in which the elements are already
in order.

Almost all the authors of Algorithm books and research
papers showing quick sort analysis, have agreed that quick
sort perform no better than O(n?) in case of ordered input.
With all the above survey and many others references the
theoreticians and practitioners have considered Quick sort
worst case to be classified in asymptotic class O (n?). But it
is found that there are some works which have encouraged to
take up the study to improve in the worst case. A detail
literature survey done with respect to Quick sort algorithm is
presented in following paragraph before we present the
design and implementation of our version Qwimb sort..

1961 C.A.R Hoare founded and implemented Quick sort
algorithm as found in[5]. It was first written in Algol 60,
which sorts the array in the random-access store of a
computer, ie., a in-place sort. He also said that no extra space
is required. The Pivot is randomly selected using a random
number generator. In [6] Hoare has also indicated and
described some places of refinement which can lead towards
optimization. He analyzed his algorithm over random data
and stated that the minimum number of comparisons
required to achieve the reduction in entropy is log,N!
~NlogzN. The average number of comparisons required by
quick sort is greater then the theoretical minimum by a factor
2loge2 = 1.4. He further suggested that the factor could be
reduced by choosing Pivot as the median of a small random
sample of the items in the segment. He further described the
inner loop of partition could be optimized using a machine
instruction to exchange elements. Mathematical analysis of
algorithm was done using rules of inference. He also showed
Merge sort running slower than Quick sort. The Function
quicksort() of Algorithm 64 is recursive and its partition()
function is iterative. Hoare did not speak about worst case
and equal keys. He also claimed that no extra memory is
needed. He showed a road-map for research in quick sort
Algorithm. Later the claim made by Hoare was proved to be
incorrect by B. Randell & J. Russell in [7].They showed that
extra space was because of activation record needed by
recursion. They also mentioned in their technical
correspondence that no changes are required to quick sort
and hence it works satisfactorily. Finally promoted Hoare’s
work.

Robert Sedgewick in his thesis titled “Quick sort” [14]
which received outstanding thesis award under supervision
of D. E Knuth has paid special attention to methods of
mathematical analysis, which are used to demonstrate the
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practical utility of the quick sort algorithm. He has developed
an exact and efficient form of quick sort, further the same is
derived for the average best case and worst case running
times. Following improvements were made in Sedgewick’s
quick sort:

1. Pivot is Median of three elements.

2. To use insertion sort method for sort small
subfile(for < 10 element).

3. Loop unwrapping is applied by using assembly
language. This was analyzed and found optimal.

4. A analytical study of equal key is thoroughly done
with implementation and testing.

Robert Sedgewick’s research work has showcased a
complete analysis especially from the point of priori
estimates and the same was verified in his practical
measurement as found in [16]. His experiments showed that
quick sort is up-to twice fast then its competitors. It was told
that small files to be avoided by being in recursion. Small
file can use insertion sort. He also clearly says that, quick
sort needs O(n?) in worst case. Practical measurement was
less shown by the author. Robert Sedgewick made a unique
way of study.

In November 1980 C.R Cook and D Jin Kim in [17]
designed a Best Sorting Algorithm for Nearly Sorted Lists.
The algorithm which is a hybrid version of quick sort, a
combination of straight insertion sort, quicker sort and merge
sort. The new algorithm performed well and showed
improvement in sorting twice, when compared with same
input with straight insertion sort ,shell sort, quick sort and
heapsort. The author tested for sample size of 50, 800,200,
500, 1000, 2000 elements.

In April 1983, D. Motzkin in [18] presented a Algorithm
which he called Meansort is based on quick sort. The
Algorithm used a special technique at every partition in
finding the Pivot. The algorithm name is based on the Mean
value used as Pivot. The algorithm have improvements over
the average cases. The algorithm was implemented in pascal
language. Mean sort is considered improvement over
standard quick sort. It is efficient even if repeating keys are
present. Efficiency was measured based on interchanges
comparison and particular stops. Means sort showed
considerable improvement over quick sort.

In April 1984, an article found in [19] “ How to sort
“ by Jon L Bentley, which showed in his experiments that the
system sort, that is, gsort in UNIX Operating System was
fast but performed a bit slow then the quick sort because it
has to be called, gsort is version of quick sort which is made
part of Unix system and hence used as a command to sort
files. He also mentioned that System commands should
fulfill the user needs and not all systems have the system sort
command. The author did not mentioned about worst case of
quick sort.

In 1985, Roger L. Wainwright in [20] showed a class of
sorting algorithms based on quick sort. Bsort a variation of
quick sort combines the interchange technique used in
bubble sort with quick sort. The algorithm improved the
average behavior of quick sort and claimed that the worst
case situation of comparison for sorted or nearly sorted lists
works best leading to removal of worst case ie., O(n?), which
later was proved incorrect by a technical correspondence
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in [21]. it showed Bsort failed to be O(n) for a simple data
set 2,4,6,8....n-2, 1,2,3....n-3 instead it took O(n?) time.

In 1987, Roger L. Wainwright in [22] modified Quick
sort algorithms with an early exit for sorted subfiles. He also
said that the improvements to quick sort have been made in
the following areas:

1. Determining a better pivot value,
2. Considering the size of subfiles and
3. Schemes of partitioning the files.

Despite improvements the worst case still remains when
a file is nearly or completely sorted, which can be assumed
as a 4" area. A version of quick sort called gsorte is
presented that provides an early exit for sorted subfiles. He
Tested on random files, sorted and nearly sorted and reverse
sorted files. Results of quick sort, Quicker sort, Bsort, gsort
are exhibited in experiments. gsorte perform good as quick
sort for random files. Author has implemented using pascal
language. Author says we should no longer refer to the quick
sort algorithm as having a worst case behavior for sorted
subfiles. He also showed that there are cases for which Quick
sort has a worst complexity of O(n?).

In 1993, Jon L Bentley and M Douglas MclL Roy in [23]
built a new gsort function for ‘C’ library based on Scowen’s
quicker sort choosing a partition elements by new scheme.
Hoare’s version for a case of 2n integers 1 23 ...n,n....32 1
took n? comparisons to sort. The Authors have engineered
the gsort version with needed improvements. The paper is
fully supported by pioneers in the field of sorting. In this
paper Program 7 wused MACROS to improve its
performances and used insertion sort for small sub arrays.
Program 7 proved to be best. The authors have mentioned
that, if worst case performance is important, Quicksort is the
wrong algorithm.

In 2007, in the paper “Quicksort: A historical perspective
and empirical study” [25] Laila khreisat studied and
compared the Quick sort variants and the new algorithm of
recent times. The study made was in terms of comparison
performed and the running times on reverse order, already
ordered and randomly generated orders. She tested on
various random integers data set from N=3000 to 500000.
The performances of all the variants are really interesting

Laila khreisat in 2018, presented Introsort found in [26]
which is combination of gsorte and heapsort. When gsorte
stops for stack overflow the sorting process is continued by
heapsort. The paper has no information about worst case of
0O(n?) being eliminated.

In 2015, the research work in [28] showed the design and
implementation of a modified version of quick sort algorithm
named Quicksort_wmb, in which the algorithm had an early
exit when ever it encountered the input array as presorted,
This algorithm worked well for ordered data set (presorted
as ascending or descending) and took linear time O(n)
instead of quadratic O(n?). In recent research it is realized
that the early exit leaves random arrays unsorted which had
the first element as the least value. When the leftmost
element in the input arrau is considered as pivot element.

A recent research of 2020 found in [29] by Bal, Aditi
Basu and Chakraborty, Soubhik titled “An Experimental
Study on a Modified Version of Quicksort” used the version
quicksort_wmb published in [27] to experiment over various
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continuous and discrete probability distributions and
measured the performance in terms of the number of
comparisons the algorithm makes to sort the whole array. A
number of common probability distributions having both
continuous and discrete-were simulated to constitute the
elements of a random unsorted list of numbers. The
modified version quicksort wmb was applied on these
arrays to sort the numbers. The results obtained were very
interesting. The continuous distributions were sorted faster
than the discrete ones by the algorithm, the reason for which,
after investigation, was found to be the existence of ties in
discrete distributions, thus providing an evidence that the
version of quicksort is sensitive to ties. The sensitivity of
quicksort_wmb to ties is not new. The interesting thing is
that the sensitivity to ties remains irrespective of the
improvement.

Finally as a summary of above detail survey it is
observed that sufficient work has been done to improve
speed for average cases especially in three areas, like
determining pivot. considering the size of sub-files and
schemes of partitioning, but as it is stated by Waingright L.R
in [22], a fourth area which is improvement to Worst case
need to considered for research. It is also seen that O(n?)
worst case of quick sort has not been improved much.

IV, DESIGN OF QWIMB SORTING

Mathematicians have contributed algorithmic analysis
from info-theoretic view point, on the other side we, the
algorithm engineers contribute from the angle of
programming languages and the computer architecture. A
responsibility that showers is to cope for the upcoming
challenges to improve and provide a compatible code design
keeping time efficiency as our objective. Quick sort is the
only Algorithm which is a heart in this field. Also as
mentioned by L. Wainwright in[22] where he suggested
research regarding improvement in the worst case. Hence we
considered Quick sort algorithm to analyze it and improve it
especially in the worst case.

A. Avoiding Worst case

Practical implementations of quick sort often pick a pivot
randomly from the list . This greatly reduces the chance of
going into worst-case situation. This method of selecting
pivot in random is seen to work excellently in practice but
still much time is exploited by the randomizer [1] which
matters the efficiency in execution. The other technique,
which deterministically prevents the worst case from ever
occurring, is to find the median of the array to be sorted each
time, and use that as the pivot. The median can be found in
linear time but that is saddled with a huge constant factor
overhead, rendering it suboptimal for practical
implementations [3].

In the present research we shall show a very simple
version which performs good and improves in the
performance when the input array is already in ascending
order. This variant has also sorted the cases shown in[21].
This variant which we call as gwimb sorting, we make the
early exit on two conditions, we check status of two pointers
along with a check of orderliness of input array. The next
section shows the design in detail.

A. Design Specification of Qwimb Sorting

As we know that quick-sort algorithm is based on the
Divide-and-Conquer paradigm that selects a pivot element
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and reorders the given list in such a way that all elements
smaller or equal to the Pivot are on one side and those bigger
than it are on the other. Thus the sub lists are recursively
sorted until the whole list gets completely sorted, also
explained in section 11 when ordered input is considered, we
need to perform best case, that is, in linear time. We have
considered the first element of the array or list as the Pivot
element.

To make this to happen we consider the leftmost element
as the pivot. We have considered three global integer
variables, no_part and Aorder which are initialized to
zero, further the decision to early exit from the quick sort is
made when the respective values of global variables
ie.,no_part and Aorder equals to 1 and recursion is avoided
later on. The global variable no_part counts the number of
partitions made in each execution of quick sort, Aorder (set
to 1) is an indicator when the array is encountered to be in
ascending order.

Aorder is set to value 1 in the partition function when i=1
and j=0, that is i does not get incremented further as
key>=a[i] becomes false in the statement
do{i++;}while(key>=a[i]); (do- while is executed only once),
where as key<a[j] is true until j become O after n executions
of the statement do{j--;}while(key<a[j]); (until key=a[j]). As
shown in Figure 2 in case of ascending order input we can
make a early exit.

Angbdervbe 0 1 ] wlwlon

nLo|n
hmy

elenert

(Fre)

|

I

Fig. 2. shows the Position of index i & j at the end of first partition when
the input array is in ascending order

Further the above changes when applied in Quicksort it
will fail to sort the random input array which has the first
element as the lowest among the array elements. In other
words  when the Pivot (leftmost element) is the least
amongst all elements of input array. To avoid such cases, we
add a small routine which checks for pre-sortedness and
avoids an early exit because the Aorder flag shall not be set
to 1, instead it continues to sort the random data set. This
modification will take extra time of about O(n). The extra
time is taken in case the array is presorted or if the element is
the smallest element for the other case, otherwise it runs
normally as the Hoare’s version does it.

V. IMPLEMENTATION QWIMB SORTING

With respect to the study made in[28,30], we have
selected C++ programming language to implement Qwimb
sorting as it best suits being a general purpose programming
language. C++ has exhibited the behaviors of sorting
algorithms as per the priori estimates and priori analysis
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found in[1,30]. The following sections shows the different
segments of the C++ code implementation.

A. Global Declarations

The Global declarations as shown in Table 1 includes the
preprocessor statements which are basically needed for input
and output operations. The global static identifier no_part is
used to count the number of partitions made during the
sorting. Aorder is a global and is used as a status flag which
is set when we find that the array is Presorted in Ascending
order.

B. Aordered Function

The Aordered function in Table 2 scans from left most
element of array and returns a boolean value True, if the
array of input numbers are already in ascending order else a
False is returned when it finds a element which is greater
than the consecutive next number in the array.

C. Qwimb Recursive Function

The Qwimb function as shown in Table 3 recursively
sorts the input array by calling partition_iwmb function
given in Table 4 to partition the array into two with respect to
the pivot element. The Qwimb function exits from the
recursion when it finds the array to be in Ascending order
with the help of partition count and Aorder flag status.

D. Partition_iwmb Function

The partition_iwmb function as shown in Table 4 assigns
the first element as the pivot and divides the array into two
parts. During the first partition it checks if the array is
already sorted with the help of the i and j index values and
the boolean value returned by Aordered function and sets the
Aorder flag.

TABLE I. GLOBAL DECLARATION FOR C++ CODE

Line No. ‘ Statements

1. F#include <cstdlib>

2 ‘using namespace std;

3. #tatic int no_part=0; /lglobal Variable

4 ‘int Aorder=0; Ilglobal Variables
TABLE II. C++ CODE OF AORDERED FUNCTION

Line No. Statements

1. bool Aordered(int a[],int n)

{for(int i=0;i<n;++i)

2
3. if (a[i]>a[i+1])return false;
4

return true; } // end of Aordered

TABLE Il C++ CODE OF QWIMB RECURSIVE FUNCTION

Line No. ‘ Statements

1. ’void Qwimb(int a[],int low,int high)

2 }{ int j;

3 \ if(low<high)

4. ‘ { j=partition_iwmb(a,low,high);

5 ‘ if (no_part= =1)

6 ‘ if(Aorder) {cout<<”Aorder”<<endl;return; }

7 \ Qwimb(a.low,j-1);

14

Volume X and Issue I11

Line No. Statements
8. Qwimb(a,j+1,high);
9. } // end of if compound statement
10. }+  //end of Qwimb
TABLE IV. C++ CODE oF PARTITION_IWMB ITERATIVE
FUNCTION
Line No. Statements
1. int partition_iwmb(int low,int high)
2 {int key,i,j,temp;
3 no_part++; // Global variable counts partitions
4 key=a[low]; // assigning the pivot
5. i=low; j=high; // initializing left & right pointer
6 while(i<j)
7 {while(a[i] <= key) i++;// hunts element > key
8 while(a[j] > key) j--; // hunts element <= key
9 if(i<j){temp=a[i];a[i]=a[j]; a[j]=temp;}
10. } // end of while
11. temp=a[low];a[low]=a[j];a[j]=temp;
/ swap j th element with pivot
12. if ((i==1) &&(j==0)&& Aordered(high,n))
IAorder =1; // set flag if Ascending
13. return j; //returns the pivot }/end of partition_seek

V1. POSTERIORI TESTING OF QWIMB SORTING

The Qwimb code is tested for its correctness on different
input samples of data under following 3 categories:

1) Pseudo Random generated input numbers (Table 5)
2) Ordered input numbers (Table 6 )
3) Special cases of input numbers (Table 7)

Program testing for random numbers and Non-
decreasing numbers.

The procedure to generate Pseudo Random
Numbers(PRNs) and Non-decreasing array of numbers is
described in [28], further set ups like set number ,size
number and range were initialized as per necessity in the
driver segment of C++ program. Also number of partitions
made by the algorithm is also highlighted in the output.
Partition counts gives a complexity indication, for example if
number of partitions less than the size of input array to 1
which indicates a average case complexity. Similarly when
Number of partitions is 1, it indicates a best case complexity.

TABLE V. RESULT OBTAINED WITH PRNS

Set | Range Input Array Sorted output No. of
No elements(size= 5) elements Partitions

1 {0100 \35 86 92 49 21 21 35 49 86 92 \ 3

2 [0-100 ‘62 279059 63 2759 62 63 90 \ 3

3 [0-100 \26 402672 36 26 26 36 40 72 \ 2

4 [0-100 \11 68 67 29 82 1129 67 68 82 \ 3

5 [0-100 \30 62 23 67 35 23 30 35 62 67 \ 2

(Random data input shows a O(nlogn) complexity)
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TABLE VI. TABLE 6. RESULT OBTAINED WITH NON-DECREASING
NUMBERS
Set | Range Input Array Sorted output No. of
No elements(size= 5) elements Partitions
1 tol3 [036912 1036912 1
2 +4to0 +4-3-2-10 F4-3-2-10 1
3  Flto3 10123 10123 1
4 8to0 |-8-6-4-20 -8-6-4-20 1
5 HF2to0 |-12-9-6-30 -12-9-6-30 1

(Ascending ordered input shows a O(n) complexity due to exit
after first partition.)

B. Program Testing on Special Input Cases

The special cases are those which are considered in [21]
and has shown quadratic complexity, which Qwimb has done
in nlogn time complexity. The Table 7 shows the results
when special cases were considered. The results obtained for
the above three categories of data, shows the correctness of the

algorithm

TABLE VII.  RESULT OBTAINED FOR SPECIAL CASES INPUT
Set Input Array elements Sorted Array elements No. of
No. Partitions
1. 49561028371 12345678910 6
2. 1234543210 0112233445 6
3.1234512345 1122334455 6
4. 12345050105020 00012345501502 6
5. 24681097531 12345678910 6
6. 28412 1013579 123457891012 5

VII. ASYMPTOTIC PERFORMANCE MEASUREMENT OF
QWIMB SORTING

A. Experiment Set-up and Data Generation

The Test bed

specified in[28].

A. Performance Measurement

(n).

Table 8 and Table 9 shows the results of executions on
random and ordered(ascending order) samples respectively
in our system which is achieved by some modification made
in the code. The output shows the data sample size, time of
execution for sorting in seconds and the number of partitions
made by Qwimb() sorting algorithm. For simplicity we have
considered output range from 100,000 samples to 10,00,000
in steps of 100,000. It is observed from the output that we
have fever partitions then the data sample size for random
data set, which indicates the time complexity of O (nlogn).
Similarly when executed for non-decreasing data set we have
only one partition which indicates the time complexity of ©

for conducting our experiments has
Memory of 3.7 GiB, Intel® CoreTM i3-6006U CPU @
2.00GHz x 4 ,64-bit, 970.9 GB, Ubuntu 16.04 LTS. Coding
Language used: linux system based compiler C++. The
experiment Setup and data generation methods used are as
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TABLE VIIl.  EXECUTION TIME FOR PRNS DATA SAMPLES
Sample size Time (s) No_of_partitions
100000 0.029839 67751
200000 0.050392 135390
300000 0.076136 203115
400000 0.099895 271008
500000 0.125967 338624
600000 0.155165 406315
700000 0.182476 474123
800000 0.211204 541884
900000 0.237766 609667
1000000 0.266798 677134
TABLE IX. TABLE 10: EXECUTION TIME TAKEN FOR ORDERED DATA
SAMPLES
Sample size Time (s) No_of_partitions

100000 0.002092 1

200000 0.001457 1

300000 0.002185 1

400000 0.002922 1

500000 0.003808 1

600000 0.004548 1

700000 0.005159 1

800000 0.005913 1

900000 0.00707 1
1000000 0.007428 1

Further, the experiments are conducted for different
sorting algorithms like bubble sort, insertion sort, mergesort,
Hoare’s quicksort and Bentley’s version ,along with our
Qwimb sort for a comparative study. The sorting results on
random data sets and ordered data sets are shown in tables 11
and 12. In-order to attain the Asymptotic behavior range we
have considered the range of sample data set from 10000 to
500,000 in steps of 10000 till 100000 and in steps of 100000
onwards.

B. Observations

Considering the results shown in tables 11 & 12 listed
below are the observations made:

1) Asymptotic Behaviors of popular sorting Algorithms
are clearly experimented and explained in the
research published in [28] therefore we concentrate
more on the performance of our version of quick sort
(gqwimb sorting).
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In both tables 11 & 12 Bubble sort takes the
maximum time to sort as it belongs to quadratic class
of growth function.

2)

3) In table 11 for random data sets, Merge sort is slow
when compare to Hoare’s Quick sort. It is also seen
that gwimb sort is a bit slower (negligible
quantity)than Hoare’s Quick sort. And as the optimal
version QuickSort-3w by Robert Sedgewick and
Bentley, found in [23] has performed faster. All of

them belong to nlogn class of growth function.

4) In table 12 for ordered data sets, we see that
execution time of both Hoare’s quick sort and
Bubble sort are nearly the same, witnessing that both
have a quadratic time complexity i.e O(n?) as per
their behaviors exhibited and priori analysis found

in[1,28].

We see that when considering the size n=500,000 the
execution time for Hoare’s quicksort is 805.665
seconds, QuickSort-3w is 389.347 seconds and that
of Qwimb is 0.1344417 seconds witnessing the
complexities of Hoare’s as quadratic, QuickSort-3w
is far better than Hoare’s where as Qwimb
performing in linear time.

5)

6) Finally, we see execution time of ordered data
samples for Qwimb sorting is linear and that with
with respect to Hoare’s Quick sort and Bentley and

Sedgewick’s taking Quadratic complexity.

VIIl. CONCLUSION

As per the literature review it is really found that
sufficient work is done in improving the speed in the average
case of quick sort and fever is found to improve the speed of
execution for the worst cases, which occurs when the input
list is presorted. Though some work is done but still has
some special cases for which it lacks to speed up. The
Qwimb sorting which we have proposed handles the
ascending data sets taken as input and sorts in linear time as
it takes only one partition. Qwimb sorting has also performed
a bit faster even in the average cases when we have randomly
generated numbers as input data set. The work also shows
the mathematical analysis of Qwimb sorting. Also, program
testing and experiments conducted verifies the priori analysis
made for program. Performance measurement considering
large data set is done so that we observe asymptotic
behaviors of algorithm. Presently the Qwimb algorithm
considers for ascending ordered and pseudo-random
generated data sets as input, in future the work can also give
consideration for decreasing ordered data sets as input hence
making it a sorting algorithm of time complexity O(nlogn).

TABLE X. SHOWS TIME TAKEN FOR RANDOM DATA SAMPLES
Input Size ?s%lrctk Msg:%e E?lsjc?rbtle 5(3:;635\/ Qvtviirr::( :)0”
time(s) | time(s) | time(s) time(s)
10000 0.010 0.003 0.403 0.00187 0.002352
20000 0.019 0.006 1.779 0.004057 0.004272
30000 0.013 0.009 4.102 0.006324 0.006825
40000 0.012 0.012 7.438 0.008894 0.009194
50000 0.013 0.016 11.844 0.011197 0.011541
60000 0.015 0.018 17.129 0.013297 0.013772
70000 0.020 0.022 23.586 0.015919 0.016738
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Quick | Merge | Bubble Quick .
Input Size| Sort sort sort Sort-3w szilmé)(:)o rt
time(s) | time(s) | time(s) time(s)
80000 0.021 0.025 31.208 0.018413 0.019033
90000 0.024 0.029 39.373 0.020875 0.021631
100000 0.027 0.032 48.755 0.023114 0.024318
200000 | 0.0557 | 0.0697 195.58 0.048613 0.050938
300000 | 0.0864 | 0.1024 | 442.68 0.074816 0.078249
400000 | 0.1148 | 0.1385 786.60 0.100895 0.106358
500000 | 0.1493 | 0.1764 | 1226.79 0.129536 0.134417
TABLE XI. SHOWS TIME TAKEN FOR NON-DECREASING DATA SAMPLES
Inout Quick Merge Bubble Quick Qwimb
Sir; o Sort sort sort Sort-3w sort
time(s) time(s) time(s) time(s) time(s)
10000 0.32702 | 0.00194 0.34876 | 0.08701 7.6e-05
20000 1.30349 | 0.00327 1.31706 | 0.13098 0.0001
30000 2.92996 | 0.00527 2.98455 | 0.23124 0.0002
40000 5.20315 | 0.00675 5.29415 | 0.29780 0.0002
50000 8.13089 | 0.01015 8.52272 3.89705 0.0003
60000 11.7192 | 0.01036 11.9832 5.61249 0.0004
70000 15.9394 | 0.01218 16.2143 7.6635 0.0005
80000 20.8201 | 0.01515 23.6834 9.9546 0.0005
90000 26.4484 | 0.01590 28.5272 12.655 0.0006
100000 32.6818 | 0.01901 33.6542 15.620 0.0007
200000 134.072 | 0.03866 133.496 62.100 0.0014
300000 295.033 | 0.05822 299.489 139.79 0.0022
400000 529.134 | 0.07896 530.479 249.14 0.0038
500000 809.665 | 0.09970 827.23 389.34 0.0043
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