Asian Journal of Convergence in Technology

Issn No.:2350-1146, |.F-2.71

Volume I, Issue |

Intrusion Detection and Prevention System in
Multitier Web Application Using Double guard

Jadhav Priya B.*, Hadawale Shwetali N.%, Pinjarkar N. R.?
UG students, Department of Computer SVCET Rajuri Pune-412411" 2

Asst. Professor, Department of Computer SVCET Rajuri Pune-412411°
adhav.neha87@gmail.com, smitahadawale448@gmail.com? , nilesh.pinjarkar81@gmail.com®

Abstract- Web application is an application that is
accessed over a network such as the Internet.
They are increasingly used for critical services, In
order to adopt with increase in demand and data
complexity web application are moved to multi-
tier Design. As web servers must be publicly
available around the clock the server is an easy
target for outside intruders. Thus web
applications are become a popular and valuable
target for security attacks. These attacks have
recently become more diverse and attention of an
attacker have been shifted from attacking the
front-end and exploiting vulnerabilities of the web
applications in order to corrupt the back-end
database system. In order to penetrate their
targets, attackers may exploit well known service
vulnerabilities. To protect multi-tier web
applications several intrusion detection systems
has been proposed. An intrusion detection system
(IDS) is used to detect potential violations in
database security. In every database, some of the
attributes are considered more sensitive to
malicious modifications compared to others.

Index Terms-Visualization, Multi-tier, IDS,
Anomaly Detection, Container

I. INTRODUCTION

To protect multi-tiered web services, Intrusion
detection systems (IDS) have been widely used to
detect known attacks by matching misused traffic
patterns or signatures [1]. In the existing system we
require different IDS one for web server and another
for database server. Two IDSes required so we need
to create two IDSes with different prevention

www.asianssr.org

measure first IDS that contains prevention measure
related to web server so attack should not happen on
web server but some time attack happen on database
server by passing web server so for that reason need
to create another IDS with prevention measure

related to database server attack. We want to avoid
creating two IDS so we are creating one
DoubleGuard system that act as IDS and prevent both
side of attack. Attack may be on web server or
database server. DoubleGuard actually invented by
Le, Stavrou and Kung[1]. Most of the IDS examine
the attack individually on web server and database
server. In order to protect multi-tiered web services
an efficient system call Intrusion Detection System is
needed to detect attacks by mapping web request and
SQL query, there is direct causal relationship
between request received from the front end web
server and those generated for the database backend.
Le, Stavrou and kung showed that this causality
mode | can be generated accurately and without prior
knowledge of web applications functionality. We
implemented the DoubleGuard using sessions. It will
allocate the isolated session for each user it is
practical for most of the web applications. Static web
sites has the controlled environment whereas
dynamic website not. Dynamic web site allow
persistent back end data modification through the
HTTP requests to include the parameters that are
variable and depend on the user input. Because of
which the mapping between the web and the database
rang from one to many as shown in the mapping
model.

In the proposed system we are implementing
Double Guard that handle both sides of attack.
Attack may be from static web site or dynamic web
site. No need to create two different IDS for two
different web site. Double Guard can handle both
types of attack

Mail:-asianjournal2015@gmail.com

mailto:adhav.neha87@gmail.com
mailto:smitahadawale448@gmail.com

Intrusion Detection System In Multi-tier Web Application Using Double-Guard

Following tasks should be accomplished by
DoubleGuard:
e It should prevent the damage that detected
intrusion could cause
e it should mitigate the damage that detected
intrusion could cause
e to discover the new attacks patterns
o Completeness: It should not fail to detect an
intrusion. It is practically impossible because it is
e Fault tolerance : it should be resistant to
attacks and its consequences
e Timeliness: DoubleGuard should perform
the analysis as quickly as possible.

Apart from the functional requirements,
DoubleGuard should satisfy the number of
economical requirements, in particular case, cost.
e cost of the product

e cost of additional computer resources
needed

e cost of administration

e An importance of all this is oblivious.
DoubleGuard should available not only to large
enterprises, but also small enterprises, as well as
private person.

Il RELATED WORK

A network intrusion detection system can be
classified into two types: signature detection and
anomaly detection. Anomaly detection first requires
the IDS to define the characterized the correct and
acceptable static from dynamic behavior of the
system. It is used to detect the abnormal behavior of
the system. We first define the normal behavior of
the system and create profile of the user. In early IDS
system that use the independent IDS used.
DoubleGuard use dependent IDS used. DoubleGuard
use the container ID using this ID each user session is
assigned to each id.

Our approach does not require input
validation, source code validation and know the
application logic. DoubleGuard uses the light weight
virtualization to create and destroy the container by
using the tool open VZ. We identify the causal
relationship between web server request and database
request. Our approach dynamically generate new
containers and recycle the used ones.

CLAMP (Confidentiality to LAMP)[1] is an
sensitive data leakage prevention technique even in
the presence of attack. Clamp guarantees that user
sensitive data can only be accessed by code running
on the behalf of different user. Whereas
DoubleGuard focuses on modeling the mapping

e Accuracy: It must not identify the legitimate
action in system environment as anomaly or
misuse like IDS

e Performance : DoubleGuard performance
must be high enough to carry out the real time
intrusion detection

impossible to have a global knowledge about
past, present and future attacks.
patterns between the HTTP request and the database
queries to detect the malicious user session. CLAMP
requires modification to the existing application code,
and the Query Restrictor works as a proxy to mediate
all database access requests. Moreover, resource
requirements and overhead differ in order of
magnitude: DoubleGuard uses process isolation
whereas CLAMP requires platform virtualization,
and CLAMP provides more coarse-grained isolation
than DoubleGuard. However, DoubleGuard would be
ineffective at detecting attacks if it were to use the
coarse-grained isolation as wused in CLAMP.
Building the mapping model in DoubleGuard would
require a large number of isolated web stack
instances so that mapping patterns would appear
across different session instances.
In addition, validating input is useful to
detect or prevent SQL or XSS injection attacks [3],
[6]. This is orthogonal to the DoubleGuard approach,
which can utilize input validate on as an additional
defense. However, we have found that Double-
Guard can detect SQL injection attacks by taking the
structures of web requests and database queries
without looking into the values of input parameters
(i.e., no input validation at the web server).

I1l. STATIC MODEL BUILDING

ALGORITHM:
In this algorithm we are getting set of web request
and gene rate SQL query according to web request. If
user perform web request and for that web request
SQL query is not generated then that web request
mark as EQS (Empty Query Set) else generated SQL
query and get result. If we got same result as
expected up to threshold value then mapping is
correct otherwise need more training sessions. In
NMR (No match request) SQL query genera ted
without web request from user but according to SQL
query action will be performed. We have used the
following static model building algorithm to create
the static webpage.

Algorithm 1: Static Model Building Algorithm.
Require: Training Dataset, Threshold t
Ensure: The Mapping Model for static website

1: for each session separated traffic Ti do

Intrusion Detection System In Multi-tier Web Application Using Double-Guard

2: Get different HTTP requests r and DB queries q in
this session

: for each different r do

:if r is a request to static file then

: Add r into set EQS

s else

ifrisnotin set REQ then

: Add r into REQ

9: Append session ID i to the set ARr with r as the
key

10: for each different q do

11: if g is not in set SQL then

12: Add q into SQL

13: Append session ID i to the set AQq with g as the
key

14: for each distinct HTTP request r in REQ do
15: for each distinct DB query g in SQL do

16: Compare the set ARr with the set AQq

17: if ARr = AQq and Cardinality(ARr) > t then
18: Found a Deterministic mapping fromr to g
19: Add q into mapping model set MSr of r

20: Mark g in set SQL

21: else

22: Need more training sessions

23: return False

24: for each DB query q in SQL do

25 :if g is not marked then

26: Add g into set NMR

27: for each HTTP request r in REQ do

28: if r has no deterministic mapping model then
29: Add r into set EQS

30:Teturn TIUE ..o

0O ~NO Ol b Ww

IV. THREAT MODEL AND SYSTEM

ARCHITECTURE
We initially set up our threat model to include our
assumptions and the types of attacks we are aiming to
protect against. The attackers can bypass the
webserver to directly attack the database server. We
assume that the attacks can neither be detected nor
prevented by the current webserver IDS, that
attackers may take over the webserver after the
attack, and that afterward they can obtain full control
of the webserver to launch subsequent attacks. In
addition, we are analyzing only network traffic that
reaches the webserver and database. We assume that
no attack would occur during the training phase and
model building.

1.1 Architecture and Confinement

In our design, we make use of lightweight process
containers, referred to as “containers,” as ephemeral,
disposable servers for client sessions. It is possible to
initialize thousands of containers on a single physical
machine, and these virtualized containers can be

discarded, reverted, or quickly reinitialized to serve
new sessions.

o F—Ryl—n- .\
I -""\\\
Clnt§1) —ht—y T~ | Database\)O
N Queres /
. ——Rq2—n P
Clent2 (52) PR /| Database
|| Server
et —Ryd——1 \ |/Database |
| Oent338) o X s |
Web Server |\ __/

Fig. 1 Classic three-tier model.
The webserver acts as the front end, with the file and
database servers as the content storage back end.

In the classic three-tier model database side,
we are unable to tell which transaction corresponds to
which client request. The communication between
the webserver and the database server is not
separated, and we can hardly understand the
relationships among them.

1.2 Building the Normality Model

This container-based and session-separated
webserver architecture not only enhances the security
performances but also provides us with the isolated
information flows that are separated in each container
session. It allows us to identify the mapping between
the webserver requests and the subsequent DB
queries, and to utilize such a mapping model to detect
abnormal behaviors on a session/client level.

: ——Rq 11—t H—Ts 1
‘ Cient1 (1) [TP VET | 4_.m_©
DataBase
CIiantZ(Sz) Rq 2=t VE2 H—Ts2—p Server
Rs 2 T 2=l
Affected
s -~ Data
Client3(83) [(_RISTI] vEs LIP3
R

Web Requests / ' Mapping \| Database Queries
Anomaly Sensors *— | Anomaly Sensors

Model

Fig.2. Webserver instances running in containers.

Once we build the mapping model, it can be
used to detect abnormal behaviors. Both the web
request and the database queries within each session
should be in accordance with the model. If there
exists any request or query that violates the normality
model within a session, then the session will be
treated as a possible attack.

1.3 Attack Scenarios

Intrusion Detection System In Multi-tier Web Application Using Double-Guard

Our system is effective at capturing the following
types of attacks:

1.3.1 Privilege Escalation Attack

This attack shows how the attacker can access the
Admin's credentials and act as admin in the system.
The attacker gets the admin's user id and password
and gives command to web server to get the private
database of user. Suppose, the attacker login into the
web server as a normal user and trigger admin
queries to obtain the administration data then this
kind of attack can never be detected by the IDS or
normal intrusion detection technique. But as our
system is allocating the different sessions for
different user we can easily detect this kind of attack.

1. Attacker request
as Normal User
2. Request 4. Admin Queries

| APPLICATION
DATABASE

s
—> SERVER
USER
S —
 —

ATTACKER

A

3. PRIVILEGE
7. Response ESCALATION
APACHE .
SERVER ADMIN ' > N -
LEVEL <

6. Response

5. Database
Reply

Fig.3._Privilege Escalation Attack

1.1.1 Hijack Future Session Attack

Figure shows how this attack attempted by the
middle person/attacker. The third person accesses the
username and password of normal user and misuse
them. In banking, travelling, personal accounts these
kinds of attacks are happened to get the personal
information of normal user. But in my DoubleGuard
technique this type of attack into possible. As every
user is getting his/her personal session which no can
access. So using this technique we can prevent this
kind of attack.

4. Queries Hijacked or

1. Buffer over runs 3. SESSION ATTACK
Dropped

ATTACKER

DATABASE
APPLICATION SERVER

—_]

2. User Regquest Tainted
| — Process
NORMAL €
USER |¢—
APACHE

¢ Bogas iasiay SERVER

5. Response
WEB SERVER

Fig.4.Hijack Future Session Attack

1.1.2 Injection Attack
Attacks such as SQL injection do not require
compromising the webserver. Attackers can use
existing vulnerabilities in the webserver logic to
inject the data or string content that contains the
exploits and then use the webserver to relay these
exploits to attack the back-end database.
llll\e?['lziggl\h 3. INJECTED QUERIES

1. Attacker request as
Normal User ‘

DATABASE
APPLICATION SERVER

—> »>
ATTACKER
‘_

I

INJECTION

6. Privileged
gj"mm' APACHE
T SERVER

5. Privileged

Tnformation
WEBSERVER o i megasse

Fig.5.Injection Attack

1.1.3 Direct DB Attack

It is possible for an attacker to bypass the webserver
or firewalls and connect directly to the database. An
attacker could also have already taken over the
webserver and be submitting such queries from the
webserver without sending web requests. Without
matched web requests for such queries, a webserver
IDS could detect.

Attacker bypassing the WebServer and sending Queries

>

ATTACKER “l

1. User 2. Request 3. User Queries
Request ‘ \ /
[] L
—> 3
USER =
' —|— APPLICATION S’
APPLICATIO:
, -
6. User
Response U
APACHE
SERVER 4. Query DATABASE

WEBSERVER Regomse SERVER

5. Response

Fig.6.Direct DB Attack

V. IMPLEMENTATION

Client 1 ‘ChemE ‘Chemb‘
_#_1 — 17

Intrusion Detection System In Multi-tier Web Application Using Double-Guard

¥

Host
Web
Server

Web
Sever 1

Web
Sever2

Web
Sever3

(Dispatcher)

VE1

VEZ

VE3

— ,.T;;'Erafﬂc Caplure

Database
Server

Host Operating System

Hardware

KEramc Caplure

Fig.7. Implementation of the system

In our prototype, we chose to assign each user
session into a different container; however, this was a
design decision. For instance, we can assign a new
container per each new IP address of the client. In our
implementation, containers were recycled based on
events or when sessions time out [3].

We were able to use the same session
tracking mechanisms as implemented by the Apache
server (cookies, user track, etc.) because lightweight
virtualization containers do not impose high memory
and storage overhead. Thus, we could maintain a
large number of parallel-running Apache instances
similar to the Apache threads that the server would
maintain in the scenario without containers. If a
session timed out, the Apache instance was
terminated along with its container.

To test our system in a dynamic website
scenario, we setup a dynamic Blog using the Word
press blogging software. In our deployment, site
visitors were allowed to read, post, and comment on
articles. All models for the received front-end and
back-end traffic were generated using these data. It’s
performance overhead, which is common for both
static and dynamic models, in the following section.
In our analysis, we did not take into consideration the
potential for caching expensive requests to further
reduce the end-to-end latency; this we left for future
study.

V1. CONTAINER OVERHEAD
One of the primary concerns for a security system is
its performance overhead in terms of latency. In our
case, even though the containers can start within
seconds, generating a container on the fly to serve a
new session will increase the response time heavily.
To alleviate this, we created pool of webserver

containers for the forthcoming sessions to what
Apache does with its threads. As sessions continued
to grow, our system dynamically instantiated new
containers upon completion of a session, we recycled
these Containers by reverting them to their initial
clean states [3].

The overhead of the server with container
architecture was measured using a machine with the
following specifications:

Four cores 2.8 GHz CPU, 8 GB memory, 100 MB/s .

VII EXPERIMENTAL RESULT

SR 8101
Fig.8.Main Page

Secure Database Query Requisition

Roquest Your Query 0o Barver

Intrusion Detection System In Multi-tier Web Application Using Double-Guard

SECURE DATABASE QUERY REQUISITION
USSR OATADASE CREATION
Sorwery 2008

.
o
e

Fig.10.User Login

VIII. CONCLUSION
We presented an intrusion detection system that
builds models of normal behavior for multi- tiered
web applications from both front-end web (HTTP)
requests and back-end database (SQL) queries.
Unlike previous approaches that correlated or
summarized alerts generated by independent IDS,
ADG forms session-based IDS with multiple input
streams to produce alerts. Such correlation of
different data streams provides a better
characterization of the system for anomaly detection
because the intrusion sensor has a more precise
normality model that detect s a wider range of

threats. Rather it also can prevent the web
applications from intrusions.

REFERENCES:
1. Meixing Le, Angelos Stavrou, Brent
ByungHoon Kang.” DoubleGuard: Detecting
Intrusions In Multi- tier Web Applications”
IEEE transaction on dependable and secure
computing vol.9 no.4 year 2012
2. Niraj Gaikwad, Swapnil Kandage,
Dhanashri Gholap, “DoubleGuard: Detecting &
Preventing Intrusions in Multitier Web
Applications”, International Journal of Networks
and Systems, of Networks and Systems, 2(2),
February — March 2013, 09 — 14, ISSN 2319 -
5975.
3. Rahul Dandwate, Lomesh Ahire, Dipali
Kumbhar, Pratik Kamble, Aniket Shirude,
Shweta Bhandakkar, “DOUBLEGUARD:
DETECTING INTRUSIONS IN MULTITIER
WEB ARCHITECTURE”, Proceedings of IRF
International Conference, 13th April-2014, Pune,
India, ISBN: 978-93-84209-04-9
4. K.Karthika, K.Sripriyadevi ,” To Detect
Intrusions in Multitier Web Applications by
using Double Guard Approach” , International
Journal of Scientific & Engineering Research
Volume 4, Issue 1, January-2013 1 ISSN 2229-
5518.
5. S.Athirayan, A.Venkatesan ,” Double Guard
detection in multitier architecture”.

