
Asian Journal of Convergence in Technology Volume III, Issue I

 Issn No.:2350-1146, I.F-2.71

www.asianssr.org Mail:-asianjournal2015@gmail.com

Intrusion Detection and Prevention System in

Multitier Web Application Using Double guard

Jadhav Priya B.
1
, Hadawale Shwetali N.

2
, Pinjarkar N. R.

3

UG students, Department of Computer SVCET Rajuri Pune-412411
1, 2

Asst. Professor, Department of Computer SVCET Rajuri Pune-412411
3

adhav.neha87@gmail.com, smitahadawale448@gmail.com
2
 , nilesh.pinjarkar81@gmail.com

3

Abstract- Web application is an application that is

accessed over a network such as the Internet.

They are increasingly used for critical services, In

order to adopt with increase in demand and data

complexity web application are moved to multi-

tier Design. As web servers must be publicly

available around the clock the server is an easy

target for outside intruders. Thus web

applications are become a popular and valuable

target for security attacks. These attacks have

recently become more diverse and attention of an

attacker have been shifted from attacking the

front-end and exploiting vulnerabilities of the web

applications in order to corrupt the back-end

database system. In order to penetrate their

targets, attackers may exploit well known service

vulnerabilities. To protect multi-tier web

applications several intrusion detection systems

has been proposed. An intrusion detection system

(IDS) is used to detect potential violations in

database security. In every database, some of the

attributes are considered more sensitive to

malicious modifications compared to others.

Index Terms-Visualization, Multi-tier, IDS,

Anomaly Detection, Container

I. INTRODUCTION

To protect multi-tiered web services, Intrusion

detection systems (IDS) have been widely used to

detect known attacks by matching misused traffic

patterns or signatures [1]. In the existing system we

require different IDS one for web server and another

for database server. Two IDSes required so we need

to create two IDSes with different prevention

measure first IDS that contains prevention measure

related to web server so attack should not happen on

web server but some time attack happen on database

server by passing web server so for that reason need

to create another IDS with prevention measure

related to database server attack. We want to avoid

creating two IDS so we are creating one

DoubleGuard system that act as IDS and prevent both

side of attack. Attack may be on web server or

database server. DoubleGuard actually invented by

Le, Stavrou and Kung[1]. Most of the IDS examine

the attack individually on web server and database

server. In order to protect multi-tiered web services

an efficient system call Intrusion Detection System is

needed to detect attacks by mapping web request and

SQL query, there is direct causal relationship

between request received from the front end web

server and those generated for the database backend.

Le, Stavrou and kung showed that this causality

mode l can be generated accurately and without prior

knowledge of web applications functionality. We

implemented the DoubleGuard using sessions. It will

allocate the isolated session for each user it is

practical for most of the web applications. Static web

sites has the controlled environment whereas

dynamic website not. Dynamic web site allow

persistent back end data modification through the

HTTP requests to include the parameters that are

variable and depend on the user input. Because of

which the mapping between the web and the database

rang from one to many as shown in the mapping

model.

In the proposed system we are implementing

Double Guard that handle both sides of attack.

Attack may be from static web site or dynamic web

site. No need to create two different IDS for two

different web site. Double Guard can handle both

types of attack

mailto:adhav.neha87@gmail.com
mailto:smitahadawale448@gmail.com

 Intrusion Detection System In Multi-tier Web Application Using Double-Guard

2

Following tasks should be accomplished by

DoubleGuard:

 It should prevent the damage that detected

intrusion could cause

 it should mitigate the damage that detected

intrusion could cause

 to discover the new attacks patterns

 Accuracy: It must not identify the legitimate

action in system environment as anomaly or

misuse like IDS

 Performance : DoubleGuard performance

must be high enough to carry out the real time

intrusion detection

 Completeness: It should not fail to detect an

intrusion. It is practically impossible because it is

impossible to have a global knowledge about

past, present and future attacks.

 Fault tolerance : it should be resistant to

attacks and its consequences

 Timeliness: DoubleGuard should perform

the analysis as quickly as possible.

Apart from the functional requirements,

DoubleGuard should satisfy the number of

economical requirements, in particular case, cost.

 cost of the product

 cost of additional computer resources

needed

 cost of administration

 An importance of all this is oblivious.

DoubleGuard should available not only to large

enterprises, but also small enterprises, as well as

private person.

 II RELATED WORK

A network intrusion detection system can be

classified into two types: signature detection and

anomaly detection. Anomaly detection first requires

the IDS to define the characterized the correct and

acceptable static from dynamic behavior of the

system. It is used to detect the abnormal behavior of

the system. We first define the normal behavior of

the system and create profile of the user. In early IDS

system that use the independent IDS used.

DoubleGuard use dependent IDS used. DoubleGuard

use the container ID using this ID each user session is

assigned to each id.

Our approach does not require input

validation, source code validation and know the

application logic. DoubleGuard uses the light weight

virtualization to create and destroy the container by

using the tool open VZ. We identify the causal

relationship between web server request and database

request. Our approach dynamically generate new

containers and recycle the used ones.

CLAMP (Confidentiality to LAMP)[1] is an

sensitive data leakage prevention technique even in

the presence of attack. Clamp guarantees that user

sensitive data can only be accessed by code running

on the behalf of different user. Whereas

DoubleGuard focuses on modeling the mapping

patterns between the HTTP request and the database

queries to detect the malicious user session. CLAMP

requires modification to the existing application code,

and the Query Restrictor works as a proxy to mediate

all database access requests. Moreover, resource

requirements and overhead differ in order of

magnitude: DoubleGuard uses process isolation

whereas CLAMP requires platform virtualization,

and CLAMP provides more coarse-grained isolation

than DoubleGuard. However, DoubleGuard would be

ineffective at detecting attacks if it were to use the

coarse-grained isolation as used in CLAMP.

Building the mapping model in DoubleGuard would

require a large number of isolated web stack

instances so that mapping patterns would appear

across different session instances.

In addition, validating input is useful to

detect or prevent SQL or XSS injection attacks [3],

[6]. This is orthogonal to the DoubleGuard approach,

which can utilize input validate on as an additional

defense. However, we have found that Double-

Guard can detect SQL injection attacks by taking the

structures of web requests and database queries

without looking into the values of input parameters

(i.e., no input validation at the web server).

III. STATIC MODEL BUILDING

ALGORITHM:

In this algorithm we are getting set of web request

and gene rate SQL query according to web request. If

user perform web request and for that web request

SQL query is not generated then that web request

mark as EQS (Empty Query Set) else generated SQL

query and get result. If we got same result as

expected up to threshold value then mapping is

correct otherwise need more training sessions. In

NMR (No match request) SQL query genera ted

without web request from user but according to SQL

query action will be performed. We have used the

following static model building algorithm to create

the static webpage.

Algorithm 1: Static Model Building Algorithm.

Require: Training Dataset, Threshold t

Ensure: The Mapping Model for static website

1: for each session separated traffic Ti do

 Intrusion Detection System In Multi-tier Web Application Using Double-Guard

3

2: Get different HTTP requests r and DB queries q in

this session

3: for each different r do

4: if r is a request to static file then

5: Add r into set EQS

6: else

7: if r is not in set REQ then

8: Add r into REQ

9: Append session ID i to the set ARr with r as the

key

10: for each different q do

11: if q is not in set SQL then

12: Add q into SQL

13: Append session ID i to the set AQq with q as the

key

14: for each distinct HTTP request r in REQ do

15: for each distinct DB query q in SQL do

16: Compare the set ARr with the set AQq

17: if ARr = AQq and Cardinality(ARr) > t then

18: Found a Deterministic mapping from r to q

19: Add q into mapping model set MSr of r

20: Mark q in set SQL

21: else

22: Need more training sessions

23: return False

24: for each DB query q in SQL do

25 : if q is not marked then

26: Add q into set NMR

27: for each HTTP request r in REQ do

28: if r has no deterministic mapping model then

29: Add r into set EQS

30:return True ...

IV. THREAT MODEL AND SYSTEM

ARCHITECTURE

We initially set up our threat model to include our

assumptions and the types of attacks we are aiming to

protect against. The attackers can bypass the

webserver to directly attack the database server. We

assume that the attacks can neither be detected nor

prevented by the current webserver IDS, that

attackers may take over the webserver after the

attack, and that afterward they can obtain full control

of the webserver to launch subsequent attacks. In

addition, we are analyzing only network traffic that

reaches the webserver and database. We assume that

no attack would occur during the training phase and

model building.

I.1 Architecture and Confinement

In our design, we make use of lightweight process

containers, referred to as “containers,” as ephemeral,

disposable servers for client sessions. It is possible to

initialize thousands of containers on a single physical

machine, and these virtualized containers can be

discarded, reverted, or quickly reinitialized to serve

new sessions.

Fig. 1 Classic three-tier model.

The webserver acts as the front end, with the file and

database servers as the content storage back end.

In the classic three-tier model database side,

we are unable to tell which transaction corresponds to

which client request. The communication between

the webserver and the database server is not

separated, and we can hardly understand the

relationships among them.

I.2 Building the Normality Model

This container-based and session-separated

webserver architecture not only enhances the security

performances but also provides us with the isolated

information flows that are separated in each container

session. It allows us to identify the mapping between

the webserver requests and the subsequent DB

queries, and to utilize such a mapping model to detect

abnormal behaviors on a session/client level.

Fig.2. Webserver instances running in containers.

Once we build the mapping model, it can be

used to detect abnormal behaviors. Both the web

request and the database queries within each session

should be in accordance with the model. If there

exists any request or query that violates the normality

model within a session, then the session will be

treated as a possible attack.

I.3 Attack Scenarios

 Intrusion Detection System In Multi-tier Web Application Using Double-Guard

4

Our system is effective at capturing the following

types of attacks:

I.3.1 Privilege Escalation Attack

 This attack shows how the attacker can access the

Admin's credentials and act as admin in the system.

The attacker gets the admin's user id and password

and gives command to web server to get the private

database of user. Suppose, the attacker login into the

web server as a normal user and trigger admin

queries to obtain the administration data then this

kind of attack can never be detected by the IDS or

normal intrusion detection technique. But as our

system is allocating the different sessions for

different user we can easily detect this kind of attack.

Fig.3. Privilege Escalation Attack

I.1.1 Hijack Future Session Attack

Figure shows how this attack attempted by the

middle person/attacker. The third person accesses the

username and password of normal user and misuse

them. In banking, travelling, personal accounts these

kinds of attacks are happened to get the personal

information of normal user. But in my DoubleGuard

technique this type of attack into possible. As every

user is getting his/her personal session which no can

access. So using this technique we can prevent this

kind of attack.

Fig.4.Hijack Future Session Attack

I.1.2 Injection Attack

Attacks such as SQL injection do not require

compromising the webserver. Attackers can use

existing vulnerabilities in the webserver logic to

inject the data or string content that contains the

exploits and then use the webserver to relay these

exploits to attack the back-end database.

Fig.5.Injection Attack

I.1.3 Direct DB Attack

It is possible for an attacker to bypass the webserver

or firewalls and connect directly to the database. An

attacker could also have already taken over the

webserver and be submitting such queries from the

webserver without sending web requests. Without

matched web requests for such queries, a webserver

IDS could detect.

Fig.6.Direct DB Attack

V. IMPLEMENTATION

 Intrusion Detection System In Multi-tier Web Application Using Double-Guard

5

Fig.7. Implementation of the system

In our prototype, we chose to assign each user

session into a different container; however, this was a

design decision. For instance, we can assign a new

container per each new IP address of the client. In our

implementation, containers were recycled based on

events or when sessions time out [3].

We were able to use the same session

tracking mechanisms as implemented by the Apache

server (cookies, user track, etc.) because lightweight

virtualization containers do not impose high memory

and storage overhead. Thus, we could maintain a

large number of parallel-running Apache instances

similar to the Apache threads that the server would

maintain in the scenario without containers. If a

session timed out, the Apache instance was

terminated along with its container.

To test our system in a dynamic website

scenario, we setup a dynamic Blog using the Word

press blogging software. In our deployment, site

visitors were allowed to read, post, and comment on

articles. All models for the received front-end and

back-end traffic were generated using these data. It’s

performance overhead, which is common for both

static and dynamic models, in the following section.

In our analysis, we did not take into consideration the

potential for caching expensive requests to further

reduce the end-to-end latency; this we left for future

study.

VI. CONTAINER OVERHEAD

One of the primary concerns for a security system is

its performance overhead in terms of latency. In our

case, even though the containers can start within

seconds, generating a container on the fly to serve a

new session will increase the response time heavily.

To alleviate this, we created pool of webserver

containers for the forthcoming sessions to what

Apache does with its threads. As sessions continued

to grow, our system dynamically instantiated new

containers upon completion of a session, we recycled

these Containers by reverting them to their initial

clean states [3].

The overhead of the server with container

architecture was measured using a machine with the

following specifications:

Four cores 2.8 GHz CPU, 8 GB memory, 100 MB/s .

VII EXPERIMENTAL RESULT

Fig.8.Main Page

Fig.9. Query Registration

 Intrusion Detection System In Multi-tier Web Application Using Double-Guard

6

Fig.10.User Login

VIII. CONCLUSION

We presented an intrusion detection system that

builds models of normal behavior for multi- tiered

web applications from both front-end web (HTTP)

requests and back-end database (SQL) queries.

Unlike previous approaches that correlated or

summarized alerts generated by independent IDS,

ADG forms session-based IDS with multiple input

streams to produce alerts. Such correlation of

different data streams provides a better

characterization of the system for anomaly detection

because the intrusion sensor has a more precise

normality model that detect s a wider range of

threats. Rather it also can prevent the web

applications from intrusions.

REFERENCES:

1. Meixing Le, Angelos Stavrou, Brent

ByungHoon Kang.” DoubleGuard: Detecting

Intrusions In Multi- tier Web Applications”

IEEE transaction on dependable and secure

computing vol.9 no.4 year 2012

2. Niraj Gaikwad, Swapnil Kandage,

Dhanashri Gholap, “DoubleGuard: Detecting &

Preventing Intrusions in Multitier Web

Applications”, International Journal of Networks

and Systems, of Networks and Systems, 2(2),

February – March 2013, 09 – 14, ISSN 2319 –

5975.

3. Rahul Dandwate, Lomesh Ahire, Dipali

Kumbhar, Pratik Kamble, Aniket Shirude,

Shweta Bhandakkar, “DOUBLEGUARD:

DETECTING INTRUSIONS IN MULTITIER

WEB ARCHITECTURE”, Proceedings of IRF

International Conference, 13th April-2014, Pune,

India, ISBN: 978-93-84209-04-9

4. K.Karthika, K.Sripriyadevi ,” To Detect

Intrusions in Multitier Web Applications by

using Double Guard Approach” , International

Journal of Scientific & Engineering Research

Volume 4, Issue 1, January-2013 1 ISSN 2229-

5518.

5. S.Athirayan, A.Venkatesan ,” Double Guard

detection in multitier architecture”.

