Asian Journal of Convergence in Technology

Issn No.:2350-1146, |.F-2.71

Volume Il Issue Il

Data Modeling Using MongoDB

Vaibhav V. Mhetre, 2Nikhil R. Ranade
Dept. of MCA, FAMT*?
Ratnagiri, India™?

University of Mumbai®?
Yyaibhavmhetre27@gmail.com
“nikhilranade3189@gmail.com

Abstract -with the uninterrupted growth of data
volumes, the storage of information, support and
maintenance have become the biggest challenge.
Relational database products fall behind to scaling the
applications according to the incoming traffic. Due to
huge data storage and scaling demands, growing
number of developers and users have begun turning to
NoSQL databases. This paper describes data modeling
and query execution in MongoDB Document database.

Key Terms- NoSQL, Shading, BSON

I. INTRODUCTION

MongoDB is an open source NoSQL document
database, initiated by 10gen Company. It was
designed to handle growing data storage needs. It is
written in c++ and its query language is JavaScript.
MongoDB stores data in the form of collections. Each
collection contains documents. MongoDB documents
are stored in binary form of JSON called BSON for-
mat. BSON supports Boolean, float, string, integer,
date and binary types. Due to document structure,
MongoDB is schema less. It is easy to add new fields
to a document or to change the existing structure of a
model. MongoDB offers a technique named Shading
to distribute collections over multiple nodes. When
nodes contains different amount of data, MongoDB
automatically redistribute the data so that load is
equally distribute across the nodes. MongoDB also
support Master-slave replication. The slave nodes are
copies of Master nodes and used for reads or backups.

MongoDB is a database management system
designed for web applications and internet
infrastructure. The data model and persistence
strategies are built for high read and write throughput
and the ability to scale easily with automatic failover.
Whether an application requires just one database
node or dozens of them, MongoDB can provide
surprisingly good performance. If you’ve experienced
difficulties scaling relational databases, this may be
great news. But not everyone needs to operate at
scale. Maybe all you’ve ever needed is a single
database server.

Il. WHY SHOULD WE USE MONGODB?

It turns out that MongoDB is immediately
attractive, not because of its scaling strategy, but rather
because of its intuitive data model. Given that a
document-based data model can represent rich,
hierarchical data structures, it’s often possible to do

www.asianssr.org
Special issues of Convergence in Computing

without the complicated multi-table joins imposed by
relational databases.

For example, suppose you’re modeling products
for an e-commerce site. With a fully normalized relational
data model, the information for any one product might be
divided among Dozens of tables. If you want to get a
product representation from the database shell, we’ll need
to write a complicated SQL query full of joins. As a
consequence, most developers will need to rely on a
secondary piece of software to assemble the data into
something meaningful.

With a document model, by contrast, most of a
product’s information can be represented within a single
document. When you open the MongoDB JavaScript
shell, you can easily get a comprehensible representation
of your product with all its information hierarchically
organized in a JSON-like structure.1 You can also query
for it and manipulate it. MongoDB’s query capabilities are
designed specifically for manipulating structured
documents, so users switching from relational databases
experience a similar level of query power. In addition,
most developers now work with object oriented
languages, and they want a data store that better maps to
objects. With MongoDB, the object defined in the
programming language can be persisted “as is,” removing
some of the complexity of object mappers.

A. Data Modeling :

1. Document Databases:
Document database stores data in the form of
documents rather than as normalized relational table
in relational databases. Data format of these
documents can be JSON, BSON or XML. Documents
are stored into collections. The relational equivalent
of document and collection are record (tuple) and
relation (table).But like relation collection does not
enforce fixed schema. It can store documents with
completely different set of attributes. Documents can
be mapped directly to the class structure of
programming language but it is difficult to map
RDBMS entity relationship data model. This makes
easier to do programming with document databases.
There is no need of JOINS in document databases as
in RDBMS due to embedded document and arrays.
That is why today a growing number of developers
are moving to document databases. MongoDB stores
data in the form of collections. Each collection
contains documents. MongoDB documents are stored
in binary form of JSON called BSON format. BSON

Mail: asianjournal2015@gmail.com

Asian Journal of Convergence in Technology

Issn No.:2350-1146, |.F-2.71

supports Boolean, float, string, integer, date and
binary types. Due to document structure, MongoDB
is schema less. It is easy to add new fields to a
document or to change the existing structure of a
model. It provides Sharing to distribute collections
over multiple nodes. When nodes contains different
amount of data, MongoDB automatically redistribute
the data so that load is equally distributed across the
nodes. MongoDB also support Master slave
replication. The slave nodes are copies of Master
nodes and used for reads or backups.

2. JSON Format Representation

In MongoDB data is stored in the form of BSON
documents. BSON is binary representation of JSON.
In MongoDB documents data is represented in the
form of field and value pairs. A field-value pair is
comprised of a “field name” in double quotes,
followed by colon “:” and then “value” in double
quotes. The values can be another documents, arrays
and array of documents. Each pair is separated by
comma. Documents are held within curly (“{ }”)
brackets and arrays are held within square (“[17)
brackets. Example database that have been used for
querying MongoDB has the document structure
shown below.

{
_id:ObjectID ('4bd9e8el7cefd644108961bb"),
Title: ‘Student Result Generation’,
url: ‘http://smyschool.com/studDB.txt',
author: ‘nikhil’,vote_count: 20,
tags: ['databases’, 'mongodb’, ‘indexing’],
image: {
url:
'http://smyschool.com/prof_logo.jpg’,
caption: ",
type: 'jpg’,
size: 75381,
data: "Binary"
b
Personal_info:{
Userid,
Address,
}
comments: [{
user: ‘Manoj’, percentage:78.00

Address:[{
Street:’R.S.Road’,
BloackNo:2,
City:’Ratnagiri’
}
]
b
user: ‘Rahul’,percentage:88.00
Address:[{
Street:’S..S.Road’,
BloackNo:4,
City:’Pune’
}

www.asianssr.org
Special issues of Convergence in Computing

Volume Il Issue Il

]
313

Above listing shows a sample document
representing student data as you can see, a document is
essentially a set of property hames and their values. The
values can be simple data types, such as strings, numbers,
and dates. But these values can also be arrays and even
other documents. These latter constructs permit
documents to represent a variety of rich data structures.
You’ll see that our sample document has a property, tags
which store the tags in an array. But even more interesting
is the comments property which references an array of
comment documents.

Let’s take a moment to contrast this with a
standard relational database representation of the same
data. Figure shows a likely relational analogue. Since
tables are essentially flat, representing the various one-to-
many relationships in your relational database are going to
require multiple tables. You start with a student table
containing the core information for each student like
name, address. Then you create three other tables, each of
which includes a class, subject, and marks referencing the
original table. The technique of separating an object’s data
into multiple tables’ likes this is known as normalization.
A normalized data set among other things, ensures that
each unit of data is represented in one place only .But
strict normalization isn’t without its costs. Notably, some
assembly is required.

To display the post we just referenced, you’ll
need to perform a join between the student info and tags
tables. You’ll also need to query separately for the
comments or possibly include them in a join as well.
Ultimately, the question of whether strict normalization is
required depends on the kind of data you’re modeling, and
I’ll have much more to say about the topic in chapter 4.
What’s important to note here is that a document oriented
data model naturally represents data in an aggregate form,
allowing you to work with an object holistically: all the
data representing a post, from comments to tags, can be
fitted into a single database object.

3. MongoDB’s key features

“In addition to providing a richness of structure,
documents need not conform to a pre-specified schema.
With a relational database, you store rows in a table. Each
table has a strictly defined schema specifying which
column and types are permitted. If any row in a table
needs an extra field, you have to alter the table explicitly.
MongoDB groups documents into collections, containers
that don’t impose any sort of schema. In theory, each
document in a collection can have a completely different
structure; in practice, a collection’s documents will be
relatively uniform. For instance, every document in the
posts collection will have fields
For the title, tags, comments, and so forth.
But this lack of imposed schema confers some
advantages.

First, your application code, and not the

database, enforces the data’s structure. This can speed up

Mail: asianjournal2015@gmail.com

Asian Journal of Convergence in Technology

Issn No.:2350-1146, |.F-2.71

initial application development when the schema is

changing frequently.

Second, and more significantly, a schema less model

allows you to represent data with truly variable properties.
Not all databases support dynamic queries.

For instance, key-value stores are query able on one axis
only: the value’s key. Like many other systems, key-value
stores sacrifice rich query power in exchange for a simple
scalability model. One of MongoDB’s design goals is to
preserve most of the query power that’s been so
fundamental to the relational database world.

To see how MongoDB’s query language works,
let’s take a simple example involving posts and
comments. Suppose you want to find all posts tagged with
the term politics having greater than 10 votes. A SQL
query would look like this:

SELECT * FROM student_info

INNER JOIN result ON student_info.id =
result.stud_id

INNER JOIN class ON result.id == class.id
WHERE class.name="FYMCA” AND
result.percentage> 50;

The equivalent query in MongoDB is specified using a
document as a matcher. The special $gt key indicates the
greater-than condition.

db.student_info.find({‘class’:
‘percentage’: {'$gt": 10}});

FYMCA

www.asianssr.org
Special issues of Convergence in Computing

Volume Il Issue Il

Note that the two queries assume a different data model.
The SQL query relies on a strict normalized model, where
student and classes are stored in distinct tables, where as
the MongoDB query assumes that tags are stored within
each post document. But both queries demonstrate an
ability to query on arbitrary combinations of attributes,
which is the essence of ad hoc query ability.

I11. CONCLUSION

In this paper it has been shown that how the data can be
effectively modeled using MongoDB instead of writing
complex queries. All related records stored as a single
document. MongoDB does not use JOINs to relate
documents like Relational Databases. In this all the data is
stored in Single document or if needs to store in different
documents then documents are related by using reference
fields.

REFERENCES

[1] MongoDB in action by Kyle Banker
[2] IEEE research paper on Modeling and Querying Data in MongoDB
by Rupali Arora, Rinkle Rani Agarwal

Mail: asianjournal2015@gmail.com

