
Asian Journal of Convergence in Technology Volume II Issue III
Issn No.:2350-1146, I.F-2.71

www.asianssr.org Mail: asianjournal2015@gmail.com
Special issues of Convergence in Computing

Data Modeling Using MongoDB
1
Vaibhav V. Mhetre,

2
Nikhil R. Ranade

Dept. of MCA, FAMT
1,2

Ratnagiri, India
1,2

University of Mumbai
1,2

1
vaibhavmhetre27@gmail.com

2
nikhilranade3189@gmail.com

Abstract -with the uninterrupted growth of data

volumes, the storage of information, support and

maintenance have become the biggest challenge.

Relational database products fall behind to scaling the

applications according to the incoming traffic. Due to

huge data storage and scaling demands, growing

number of developers and users have begun turning to

NoSQL databases. This paper describes data modeling

and query execution in MongoDB Document database.

Key Terms- NoSQL, Shading, BSON

I. INTRODUCTION

MongoDB is an open source NoSQL document

database, initiated by 10gen Company. It was

designed to handle growing data storage needs. It is

written in c++ and its query language is JavaScript.

MongoDB stores data in the form of collections. Each

collection contains documents. MongoDB documents

are stored in binary form of JSON called BSON for-

mat. BSON supports Boolean, float, string, integer,

date and binary types. Due to document structure,

MongoDB is schema less. It is easy to add new fields

to a document or to change the existing structure of a

model. MongoDB offers a technique named Shading

to distribute collections over multiple nodes. When

nodes contains different amount of data, MongoDB

automatically redistribute the data so that load is

equally distribute across the nodes. MongoDB also

support Master-slave replication. The slave nodes are

copies of Master nodes and used for reads or backups.

MongoDB is a database management system

designed for web applications and internet

infrastructure. The data model and persistence

strategies are built for high read and write throughput

and the ability to scale easily with automatic failover.

Whether an application requires just one database

node or dozens of them, MongoDB can provide

surprisingly good performance. If you’ve experienced

difficulties scaling relational databases, this may be

great news. But not everyone needs to operate at

scale. Maybe all you’ve ever needed is a single

database server.

II. WHY SHOULD WE USE MONGODB?

It turns out that MongoDB is immediately

attractive, not because of its scaling strategy, but rather

because of its intuitive data model. Given that a

document-based data model can represent rich,

hierarchical data structures, it’s often possible to do

without the complicated multi-table joins imposed by

relational databases.

For example, suppose you’re modeling products

for an e-commerce site. With a fully normalized relational

data model, the information for any one product might be

divided among Dozens of tables. If you want to get a

product representation from the database shell, we’ll need

to write a complicated SQL query full of joins. As a

consequence, most developers will need to rely on a

secondary piece of software to assemble the data into

something meaningful.

With a document model, by contrast, most of a

product’s information can be represented within a single

document. When you open the MongoDB JavaScript

shell, you can easily get a comprehensible representation

of your product with all its information hierarchically

organized in a JSON-like structure.1 You can also query

for it and manipulate it. MongoDB’s query capabilities are

designed specifically for manipulating structured

documents, so users switching from relational databases

experience a similar level of query power. In addition,

most developers now work with object oriented

languages, and they want a data store that better maps to

objects. With MongoDB, the object defined in the

programming language can be persisted “as is,” removing

some of the complexity of object mappers.

A. Data Modeling :

1. Document Databases:

Document database stores data in the form of

documents rather than as normalized relational table

in relational databases. Data format of these

documents can be JSON, BSON or XML. Documents

are stored into collections. The relational equivalent

of document and collection are record (tuple) and

relation (table).But like relation collection does not

enforce fixed schema. It can store documents with

completely different set of attributes. Documents can

be mapped directly to the class structure of

programming language but it is difficult to map

RDBMS entity relationship data model. This makes

easier to do programming with document databases.

There is no need of JOINS in document databases as

in RDBMS due to embedded document and arrays.

That is why today a growing number of developers

are moving to document databases. MongoDB stores

data in the form of collections. Each collection

contains documents. MongoDB documents are stored

in binary form of JSON called BSON format. BSON

Asian Journal of Convergence in Technology Volume II Issue III
Issn No.:2350-1146, I.F-2.71

www.asianssr.org Mail: asianjournal2015@gmail.com
Special issues of Convergence in Computing

supports Boolean, float, string, integer, date and

binary types. Due to document structure, MongoDB

is schema less. It is easy to add new fields to a

document or to change the existing structure of a

model. It provides Sharing to distribute collections

over multiple nodes. When nodes contains different

amount of data, MongoDB automatically redistribute

the data so that load is equally distributed across the

nodes. MongoDB also support Master slave

replication. The slave nodes are copies of Master

nodes and used for reads or backups.

2. JSON Format Representation

In MongoDB data is stored in the form of BSON

documents. BSON is binary representation of JSON.

In MongoDB documents data is represented in the

form of field and value pairs. A field-value pair is

comprised of a “field name” in double quotes,

followed by colon “:” and then “value” in double

quotes. The values can be another documents, arrays

and array of documents. Each pair is separated by

comma. Documents are held within curly (“{ }”)

brackets and arrays are held within square (“[]”)

brackets. Example database that have been used for

querying MongoDB has the document structure

shown below.

{

_id:ObjectID ('4bd9e8e17cefd644108961bb'),

Title: ‘Student Result Generation’,

url: 'http://smyschool.com/studDB.txt',

author: ‘nikhil’,vote_count: 20,

tags: ['databases', 'mongodb', 'indexing'],

image: {

url:

'http://smyschool.com/prof_logo.jpg',

caption: '',

type: 'jpg',

size: 75381,

data: "Binary"

},

Personal_info:{

Userid,

Address,

}

comments: [{

user: ‘Manoj’, percentage:78.00

Address:[{

Street:’R.S.Road’,

BloackNo:2,

City:’Ratnagiri’

 }

]

},

{

user: ‘Rahul’,percentage:88.00

Address:[{

Street:’S..S.Road’,

BloackNo:4,

City:’Pune’

 }

]

}] }

Above listing shows a sample document

representing student data as you can see, a document is

essentially a set of property names and their values. The

values can be simple data types, such as strings, numbers,

and dates. But these values can also be arrays and even

other documents. These latter constructs permit

documents to represent a variety of rich data structures.

You’ll see that our sample document has a property, tags

which store the tags in an array. But even more interesting

is the comments property which references an array of

comment documents.

Let’s take a moment to contrast this with a

standard relational database representation of the same

data. Figure shows a likely relational analogue. Since

tables are essentially flat, representing the various one-to-

many relationships in your relational database are going to

require multiple tables. You start with a student table

containing the core information for each student like

name, address. Then you create three other tables, each of

which includes a class, subject, and marks referencing the

original table. The technique of separating an object’s data

into multiple tables’ likes this is known as normalization.

A normalized data set among other things, ensures that

each unit of data is represented in one place only .But

strict normalization isn’t without its costs. Notably, some

assembly is required.

To display the post we just referenced, you’ll

need to perform a join between the student info and tags

tables. You’ll also need to query separately for the

comments or possibly include them in a join as well.

Ultimately, the question of whether strict normalization is

required depends on the kind of data you’re modeling, and

I’ll have much more to say about the topic in chapter 4.

What’s important to note here is that a document oriented

data model naturally represents data in an aggregate form,

allowing you to work with an object holistically: all the

data representing a post, from comments to tags, can be

fitted into a single database object.

3. MongoDB’s key features

`In addition to providing a richness of structure,

documents need not conform to a pre-specified schema.

With a relational database, you store rows in a table. Each

table has a strictly defined schema specifying which

column and types are permitted. If any row in a table

needs an extra field, you have to alter the table explicitly.

MongoDB groups documents into collections, containers

that don’t impose any sort of schema. In theory, each

document in a collection can have a completely different

structure; in practice, a collection’s documents will be

relatively uniform. For instance, every document in the

posts collection will have fields

For the title, tags, comments, and so forth.

But this lack of imposed schema confers some

advantages.

First, your application code, and not the

database, enforces the data’s structure. This can speed up

Asian Journal of Convergence in Technology Volume II Issue III
Issn No.:2350-1146, I.F-2.71

www.asianssr.org Mail: asianjournal2015@gmail.com
Special issues of Convergence in Computing

initial application development when the schema is

changing frequently.

Second, and more significantly, a schema less model

allows you to represent data with truly variable properties.

Not all databases support dynamic queries.

For instance, key-value stores are query able on one axis

only: the value’s key. Like many other systems, key-value

stores sacrifice rich query power in exchange for a simple

scalability model. One of MongoDB’s design goals is to

preserve most of the query power that’s been so

fundamental to the relational database world.

To see how MongoDB’s query language works,

let’s take a simple example involving posts and

comments. Suppose you want to find all posts tagged with

the term politics having greater than 10 votes. A SQL

query would look like this:

SELECT * FROM student_info

INNER JOIN result ON student_info.id =

result.stud_id

INNER JOIN class ON result.id == class.id

WHERE class.name=’FYMCA” AND

result.percentage> 50;

The equivalent query in MongoDB is specified using a

document as a matcher. The special $gt key indicates the

greater-than condition.

db.student_info.find({‘class’: ' FYMCA ',

‘percentage’: {'$gt': 10}});

Note that the two queries assume a different data model.

The SQL query relies on a strict normalized model, where

student and classes are stored in distinct tables, where as

the MongoDB query assumes that tags are stored within

each post document. But both queries demonstrate an

ability to query on arbitrary combinations of attributes,

which is the essence of ad hoc query ability.

III. CONCLUSION

In this paper it has been shown that how the data can be

effectively modeled using MongoDB instead of writing

complex queries. All related records stored as a single

document. MongoDB does not use JOINs to relate

documents like Relational Databases. In this all the data is

stored in Single document or if needs to store in different

documents then documents are related by using reference

fields.

REFERENCES

[1] MongoDB in action by Kyle Banker

[2] IEEE research paper on Modeling and Querying Data in MongoDB
by Rupali Arora, Rinkle Rani Agarwal

