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Abstract - In this paper, the joint effect of hyperspectral and light 

detection and ranging (LiDAR) data for urban land use/ land 

cover (LULC) classification has been analyzed as combination of 

two data sources can result in better classification as compared to 

single data source. LULC classification of urban areas is a 

difficult task due to high spectral and spatial variability, 

especially with the use of single data source. The result of spectral 

angle mapper (SAM) classification, a supervised classification 

method, on hyperspectral imagery is compared with that of a 

knowledge based classification (KBC) combining LiDAR and 

hyperspectral data. Spectra from ASTER library was used as 

reference spectra for SAM classification while for Knowledge 

based classification nDSM derived from LiDAR data and indices 

derived from Hyperspectral data has been used. It was found 

that knowledge based classification had 7-8% more accuracy 

than SAM classification. Thus, it can be concluded that 

Knowledge based classification can be used as an efficient 

technique in this area. 
 

 Index Terms – Knowledge-based classification, 

Hyperspectral, Normalized Digital surface model (nDSM) 

 

I. INTRODUCTION 

Over the time, many studies have investigated the use of 

remote sensing technology in urban land-use classification. 

Although, most analysis in urban areas is being done using 

aerial photography as a data source. Recent advances in space 

borne systems, provide alternatives to aerial photography, and 

implemented the use of multispectral imagery, Hyperspectral 

images as well as LiDAR derived data images. 

However, use of remote sensing in accurate land use 

classification has always been a difficult task. There are 

several reasons for this difficulty: (i) It is difficult to classify 

manmade urban structure due to their spectral heterogeneity at 

small scales [1] [2] [3]. (ii) The complexity of urban areas 

makes it difficult for a single remote sensing source to meet all 

the requirements of precise classification [4] [5] [1]. (iii)Most 

pixels in urban areas appear to be mixed at low spatial 

resolution which prevents accurate land use classification [6]. 

The development of hyperspectral sensors has improved 

the accuracy of discrimination between similar land use 

classes as they provide hundreds of narrow continuous 

spectral bands from visible to shortwave infrared parts of 

electromagnetic spectrum [7]. Due to its advantages 

hyperspectral remote sensing has been increasingly used in 

various applications including land use classification [8]. 

However, due to spectral complexity in urban areas, even 

hyperspectral images alone are not enough for classification 

[9] [10]; accurate classification of urban areas requires multi 

source remote sensing images. 

Unlike other remote sensing data, LiDAR has the 

advantage of providing a third dimension of height which can 

be used to separate classes of different heights such as 

buildings and roads in urban areas [11] [12]. The elevation 

information of the LiDAR data is very helpful in separating 

similar spectral signatures when it is used in combination with 

hyperspectral data [11]. Debes, et al., 2013 [28] investigated 

how the fusion of hyperspectral and LiDAR data provides 

improvements over traditional automated methods such as 

feature extraction and supervised pixel based classification. 

Huang, et al., 2008 [30] performed a traditional pixel level 

classification using multispectral and LidAR data and to 

further improve the accuracy they proposed a knowledge 

based classification system that included a rule based scheme 

and a knowledge based correction. 

In this study we evaluate improvements in classification 

by integrating airborne Hyperspectral (AVIRIS data) and 

LiDAR data for classifying different urban land features. The 

main objectives of this study are to explore: (i) The 

performance of combined LiDAR and Hyperspectral data for 

urban land-use classification, especially the contribution of 

LiDAR height information for land-use classification in the 

areas of similar spectral signature (ii) The efficiency of 

knowledge based classification by specifying a set of rules for 

establishing a decision based system by defining an integrative 

decision tree including three dimensional information data 

bases and two spectral indices. The goal is to derive an 

efficient classified image using both the spectral information 

of Hyperspectral data and the spatial information of LiDAR 

data. 
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II. STUDY AREA AND DATA SETS 

A. Study site 

 The study area selected is a south central part of the 

city of San Diego (Latitude 32o 41‘, Longitude -117o 6‘) in 

the state of California, USA shown in figure 1.  The region 

lies on the coast of the Pacific Ocean in Southern California, 

on an average elevation of 25m above the mean sea level with 

an area of about 4.2 km
2
. 

       Land use classification in this particular area is 

challenging because of the following issues: (i) spectral 

similarity between roads and highway leads to 

misclassification (ii) the mixed pixels [6] (iii) spectral 

similarity between rooftops and roads (iv) most buildings are 

surrounded by trees which leads to difficulty in identifying 

building footprints. 

B. Data 

 1) LiDAR data: Lidar data has been downloaded from 

Data/Open Topography where it is freely available, URL: 

http://opentopo.sdsc.edu/lidar. This airborne data was acquired 

during the survey done between 03/16/2005 - 05/12/2005 by 

Merrick, Inc. The total survey area was around 1,190.00 km
2
 

with the point density of 1.41 points/m
2
. The Horizontal and 

Vertical Coordinates reference is NAD83 California State 

Plane Zone VI FIPS 0406 Feet [EPSG: 2875] and NGVD29 

Feet respectively. 

 2) Hyperspectral data: The hyperspectral data has been 

downloaded from AVIRIS data portal where it is freely 

available, URL: http://aviris.jpl.nasa.gov/alt_locator/. The 

airborne hyperspectral imagery was acquired on 16th 

November 2011 at the time 16:19:00 UTC. The hyperspectral 

sensor used was AVIRIS and the average altitude of the sensor 

above the ground was 20km. The imagery consisted of 224 

bands in 365.93-2496.23 nm region. The spatial and spectral 

resolutions were 4.5m and 9.92nm, respectively. The spatial 

reference is UTM, Zone 11 North. 

I. METHODOLOGY 

A. Data Preprocessing 

 Preprocessing of Hyperspectral data was done to 

convert radiance data into reflectance data by applying sensor 

and atmospheric corrections. Sensor corrections include bad 

band removal i.e. all the noisy and zero value bands using 

ENVI software version 5.0. AVIRIS hyperspectral data 

consists of 224 bands out of which 44 bands were noisy. 

Hence after removal of bad bands the data only consisted of 

180 bands. Table 1 shows all the bad bands. 
Table.1 Bands with zero values or noise 

Bad Bands 

1, 2, 3, 4, 5, 107, 108, 109, 110, 111, 112, 113, 114, 115, 

116, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 

163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 

175, 176, 221, 222, 223, 224 

After the removal of bad bands, atmospheric correction 

was performed in ENVI atmospheric correction module i.e. 

Fast Line-of-sight Atmospheric Analysis of Hypercube 

(FLAASH) based on MODTRAN. FLAASH correction is 

done to remove all the adverse effects of atmosphere and to 

determine true surface reflectance values [13]. There are 

certain area specific and data specific parameters which needs 

to be mentioned for applying atmospheric correction to a 

dataset. The input parameters used by the FLAASH 

atmospheric correction module are listed in Table 2. 
Table.2 Input parameters used for the atmospheric correction of 

hyperspectral dataset 

FLAASH parameters Value given for 

Hyperspectral data 

Scene Centre Latitude 32
o 
41‘ 

Scene Centre longitude -117
o 
6‘ 

Scaling Factor 300 for band 6-110 & 600 for 

rest 

Pixel Size 4.5 m 

Sensor Type Hyperspectral-AVIRIS 

Flight Date 16
th 

November 2011 

Average Flight Time 19:16:00 

Sensor Altitude 20 km 

Ground Elevation 0.249 

Atmospheric Model U.S. Standard  

Water Retrieval No 

Aerosol Model Urban 

Aerosol Retrieval None 

Initial visibility 40 km 
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 (a)  (b)   

Fig. 1. (a) Study Area (google earth) (b) Location of Study Area 
 

 

B. Indices calculation & nDSM generation 

 Two indices were calculated in this study namely 

Normalized Difference Vegetation Index (NDVI) and 

Normalized Differential Built-up Index (NDBI). NDVI is a 

numerical indicator that uses the visible and near-infrared 

bands of the electromagnetic spectrum, and is adopted to 

analyze remote sensing measurements and assess whether the 

target being observed contains live green vegetation or not. 

NDVI was calculated from equation 1. 

                                                      (1) 

Where NIR is the reflectance in Near Infra-Red Band and Red 

is the reflectance in Red band of the spectrum. NDBI is the 

numerical indicator that uses the short wave infra-red and near 

infra-red bands of electromagnetic spectrum for mapping 

built-up areas. NDBI is calculated from equation 2. 

                                                           (2) 

Where NIR is the reflectance in Near Infra-Red Band and 

SWIR is the reflectance in Short wave infra-red band of the 

spectrum. Digital Surface Model (DSM) and Digital Elevation 

Model (DEM) generated using ENVI 5.0 software are of the 

resolution of 1 m. nDSM is generated by subtracting DEM 

from DSM by equation 3.  

                                                        (3) 

The generated nDSM was then co-projected with the AVIRIS 

reflectance image using ERDAS 2014 software. The projected 

nDSM is of 4.5 m resolution as that of AVIRIS image. 

C.  Classification 

1) Supervised classification: For the classification of 

Hyperspectral data a supervised classification technique 

Spectral Angel Mapper (SAM) has been used. SAM algorithm 

is based on an assumption that every single pixel of remote 

sensing image represents one certain ground cover material, 

thus can be uniquely assigned to only one ground cover class. 

The SAM algorithm determines the spectral similarity 

between two spectra by calculating the angle between the two, 

treating them as vectors with dimensionality equal to the 

number of bands [14]. In this algorithm the spectral similarity 

has been determined using equation 4 

                                    (4) 

Herein, nb is the number of bands in the image; t is pixel 

spectrum; r in reference spectrum and α is spectral angle. 

The reference spectra for SAM classification was picked 

from ASTER spectral library. The ASTER spectral library 

includes data from three other spectral libraries: the Johns 

Hopkins University (JHU) Spectral Library the Jet Propulsion 

Laboratory (JPL) Spectral Library, and the United States 

Geological Survey (USGS - Reston) Spectral Library [15]. 

 

 

 Fig. 2. Flowchart of methodology 

 

 

For the calculation of spectral separability of these 8 

classes spectral Analyst in ENVI 5.0 was used according to 

which variable angles for different classes in SAM 

classification were decided. The spectra from ASTER spectral 

library were also resampled to match with the 180 bands of 

AVIRIS data. Angles given to different classes for performing 

SAM classification is shown in Table 3. 

Table 3. Angles given for SAM classification 

Material Angle used for SAM classification 

Asphalt concrete road 0.2 

Construction concrete 0.22 

Paving asphalt road 0.25 

Reddish asphalt shingle 0.2 

Slate stone shingle 0.3 
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Vegetation Grass 0.35 

Vegetation Tree 0.18 

Gravelly sandy loam 0.22 

 

2)  Knowledge based classification: For the integration 

of Hyperspectral and LIDAR data, a knowledge based 

classification (KBC) was carried out. The variables used 

in Knowledge based classification are NDVI, NDBI 

             Fig. 3. Decision tree for knowledge based classification 

which were derived from AVIRIS reflectance image and 

nDSM which has been derived from the point cloud LiDAR 

data. Knowledge based classification was done in ERDAS 

imagine 2014 software after doing the co-registration of all 

three. The set of hypothesis, rules and variables used is shown 

in Figure 3. 

D. Accuracy Assessment 

The accuracy assessment of the thematic maps was based 

on the error matrix, which was calculated from ERDAS 

imagine 2014 [16].For this we compared certain randomly 

distributed pixels in the classified image to the reference 

pixels. There were 51 validation pixels taken, for which the 

classes were found out from the Hyperspectral image. As a 

result, overall accuracy (OA), producer‘s accuracy (PA) and 

kappa coefficient (κ) were calculated. The error matrix is an n 

* n matrix where rows representing classification samples and 

the columns representing the reference samples [17]. The 

kappa coefficient can be defined as a multivariable statistical 

method which is used for assessing classification accuracy and 

can be defined as in equation (5) [18]. 

                                 (5) 

Herein, κ is the kappa coefficient; q is the number of rows 

in the error matrix; nkk is the observation in row k and column 

k; and nk+ and n+k are the sums of all observations of row k 

and column k [18]. [19] 

II. RESULTS AND DISCUSSIONS 

A. Atmospheric Correction 

FLAASH Atmospheric correction model is used for the 

correction of AVIRIS radiometric data. Results of the spectral 

profiles before and after atmospheric correction of the datasets 

were compared by observing spectra of building, road and 

vegetation and they have shown significant improvement in 

the spectral profile after atmospheric correction. The results 

obtained for the three features before and after atmospheric 

correction are explained in Figure 4 in terms of their spectral 

profiles. 

It can be seen in the spectral signatures that all the water 

absorption bands have been removed from the spectral 

signatures. Spectra of grass shows reflectance at green band 

and very high reflectance at NIR band but not so obvious 

absorption in red band may be because of some processing 

errors. The building spectra which is most probably made of 

concrete has spectral signature very close to concrete. Almost 

all the spectra after atmospheric correction have higher 

reflectance than before. 

 

 

 

 

 

 

 

 

            Before                                       After 
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Fig. 4. (a) Vegetation, (b) Road and (c) Building spectra before and after atmospheric correction 

B. Spectral Angle Mapper classification  

Spectral Angle Mapper Classification approach is used 

for the Classification of Hyperspectral Data. The classes used 

were 8 with spectra derived from ASTER spectral library. As 

the main purpose of our study was to extract buildings, roads, 

trees and open land, so we merged these classes into 4 broader 

classes. The classification result after the merging of classes is 

shown in figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. SAM classified image 
 

In this classified image it can be seen that at some points, 

buildings and roads are misclassified because of spectral 

similarity between the rooftop material and road material e.g. 

paving asphalt and reddish asphalt shingle. Even in the 

vegetation at some points are misclassified due to huge 

spectral similarity between grass and tree spectra. The overall 

accuracy of this SAM classified image was found to be 

60.78%. Accuracy assessment of the classification results is 

shown in Table 4. 

C.  Normalized Digital surface Model 

As stated earlier in the methodology nDSM is generated 

by subtracting DEM from DSM which were earlier derived 

from point cloud LiDAR data. The main purpose of 

calculation of nDSM is to get the height of manmade 

(buildings and roads) and natural (trees and grass) features 

above the surface of earth. 

D. Normalized Differential Vegetation Index 

NDVI was calculated from the hyperspectral data to get 

the greenness of study area. In the study area NDVI ranges 

from .4 to 1 for grass and .5 to 1 for tree. And for buildings 

and roads it is lesser than 0.2 but we have not taken NDVI into 

consideration for knowledge based classification. 

E. Normalized Differential Built-up Index 

NDBI is used to calculate density of Roads and buildings 

in the study area. It was found that for roads NDBI ranges 

from -0.2 to 1 while for the buildings it ranges from -0.5 to 1.                                                                                                                                                                                     
Table 4. Accuracy of individual classes 

F. Knowledge based classification 

For knowledge based classification the set of hypothesis, 

rules and variables are previously shown in methodology. 

Classified image according to those rule is shown in Figure 6. 

The accuracy of 68.63% was achieved for this classification. 

Accuracy assessment of the classification results is shown in 

Table 4. 

 

 

 

 

 

 

 

 

 

  

 

 

                                                                                

 

 

 

 

Fig. 6. Knowledge based classified image 

Classes  Accuracy 

(%) 

Kappa 

Coefficient 

Producer’s 

Accuracy (%) 

 SAM KBC SAM KBC SAM KBC 

Unclassified - - 0.0000 0.0000 - - 

Buildings 33.33 73.33 0.2924 0.5879 65 61.11 

Roads 62.9 100 0.9273 1.000 83.33 80 

Trees 100 84.62 1.0000 0.7879 27.27 78.57 

Grass 50 33.33 0.4446 0.2766 69.05 25 



Asian Journal of Convergence in Technology Volume 3, Issue 3 ISSN 
No.:2350-1146, I.F-2.71 

 

www.asianssr.org                                                                                     ID: 182 

 

 

G. Comparative analysis of accuracy 

The accuracy achieved for knowledge based classified image 

was around 8% more than the SAM classified image which 

shows that the classification result of knowledge based 

classification was more accurate as compared to SAM 

classification. Some of the areas were chosen for comparison 

of results and the results are shown in figure 7.  
In figure 7 (a), the SAM classified image the ‗D‘ road is 

not classified properly while in the knowledge based classified 

image the classification is more precise. The ‗D‘ shape of road 

is clearly seen in the knowledge based classified image. In 

figure 7 (b), the subset which is a building made of construction 

concrete has not been classified properly in SAM classification.  

 

 

 

 

 

 

 

 

                                                                                SAM               KBC 
 

Fig. 7. Comparison between SAM and KBC classification 
In SAM classified image most of the building is either 

unclassified or covered with paving asphalt road with a very 

little part of construction concrete. But as we analyze the 

knowledge based classified image the building boundary is 

clearly visible. In figure 7 (c), we can clearly visualize the 

increase in accuracy of knowledge based classified image in 

which the building boundary is clearly visible which is not at 

all visible in the SAM classified image. 

III. CONCLUSION 

The results of SAM experiments indicate that 

classification accuracy is not satisfactory in standard cases 

involving only Hyperspectral imagery. However, the 

incorporation of LiDAR data, especially NDSMs, significantly 

improves accuracy. Thus, urban classification is highly 

dependent on LiDAR height rather than on multispectral or 

Hyperspectral imagery.  

Knowledge-based classification rules improved urban 

classification performance. Three factors may explain the 

success of this method. First, the four height-level 

classification framework not only reduces the number of 

categories at each level but also overcomes the ambiguity 

between high-height and low-height objects. In addition, the 

KBC successfully removes shadows between buildings from 

the preliminary classified image. The KBC experiment results 

indicate that the overall accuracy of the KBC is 8 percent 

better than that of the SAM approach. Moreover, the visual 

details in the KBC are superior to those of the SAM. .  

The KBC provides the procedures and mechanisms to 

formalize knowledge into classification rules. The advantage 

of the KBC is that its procedure can be repeated by designing 

a stand-alone program or applying the rules to commercial 

classification software with ―expert system‖ functionality, 

such as ERDAS Imagine®. In the future, more subcategories 

can be extended to the KBCS according to user requirements. 

More ground-feature discriminative models and inference 

rules can be explored if more subcategories are needed for 

enhanced accuracy results. 
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