
Asian Journal of Convergence in Technology Volume IV Issue II

ISSN NO: 2350-1146 I.F-5.11

www.asianssr.org Page 1

Search and Highlight of Required Substrings in Printed Documents using

OCR

Implementation of software application to digitally highlight desired text in hard copies

 A. Athul Krishna A, Student, College of Engineering TVM, B. Bharath Kartha, Student, College of

Engineering TVM and C. Vishnu S Nair, Studnet, College of Engineering TVM

Abstract—The implementation of a software application to search for and highlight desired text in a printed

document is explained in this paper. An image feed of the hard copy in which search is to be done is given as

input to software along with the desired substring whose location is to be identified within document. The

program explained in this paper coverts the image to a text document using the Optical Character Recognition

(OCR) engine Tesseract, searches through it, highlights the desired substring in the image and displays it,

thereby making the detection of its location in the actual hard copy an easy job.

Keywords—dynamic optical character recognition, substring

search in printed documents

I. INTRODUCTION

Human brains have evolved such as to devote maximum
image processing power to identifying faces, patterns and other
natural phenomenon. Consequently, they are bad at locating
specific details in information dense situations. This becomes
apparent especially in text available as printed documents and
images (as opposed to digital text documents where most
usually a search option is present for easy location of desired
substring). Thus in such applications, wherein human have to
search for words and patterns in a text dense copy or image, the
process is often unnecessarily time consuming and frustrating
for the user. The technology introduced in this paper provides a
search facility to real life documentations. This technology
reads characters from a desired image and finds desired letters
or words from the aforementioned image input.

By using a camera (or any other such imaging devices) a
digital copy of the desired document or dense text is generated
and input to the software. The technology elucidated in the
forthcoming sections leverages advances in Optical Character
Recognition systems (OCR) to generate a word searchable file
of the letters and words identified from the input image. This
file can then be searched to locate desired keywords and
substrings by the user. To facilitate ease in locating the position
of the identified text in the original input image (of the printed
document), a digital copy is generated highlighting the located
word in the image itself. In the prototype developed,
Tesseract[1] is used as the OCR engine, python[2] is used as
the programming language, and various libraries within python
like PIL[3], Tkinter[4], os [5] etc are used.

The rest of this paper is divided into the following sections
: Section II deals with how the software was implemented,

Section III details the algorithm used, Section IV describes one
specific application where this technology can be utilized,
Section V some miscellaneous applications, Section VI gives
some test results of the software, Section VII gives some
possible future work and improvements and Section VIII is the
conclusion.

II. IMPLEMENTATION

Tesseract is an optical character recognition engine for various
operating systems. It is free software, released under the
Apache License, Version 2.0, and development has been
sponsored by Google since 2006. In 2006 Tesseract was
considered one of the most accurate open-source OCR engines

then available.

For this
particular

Fig 1: GUI to select image for OCR engine

Fig 2: GUI to input search term

Fig 3: GUI to display

search result

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume IV Issue II

ISSN NO: 2350-1146 I.F-5.11

www.asianssr.org Page 2

project, the Tesseract engine has been utilized for the purpose
of Optical Character Recognition. Python-tesseract[6] is a
wrapper for `Google's Tesseract-OCR Engine[7][8].Python-
tesseract is also useful as a stand-alone invocation script to
tesseract, as it can read all image types supported by the Python
Imaging Library(PIL), including jpeg, png, gif, bmp, tiff, and
others, whereas tesseract-ocr by default only supports tiff[9]
and bmp[10]. Additionally, if used as a script, Python-tesseract
will also print the recognized text instead of simply writing it to
a file.

However, its efficiency for the said purpose of this paper
has not been studied and rather Tesseract engine itself has been
utilized using the 'os' library of python. The OS module in
Python provides a way of using operating system dependent
functionality. The functions that the OS module provides
allows you to interface with the underlying operating system
that Python is running on – be that Windows, Mac or Linux. In
this particular project, the operating system used was Linux
(Ubuntu 14.04 LTS).

Further, for image manipulation, the Python Imaging
Library (PIL) has been used. PIL (in newer versions known as
Pillow) is a free library for the Python programming language
that adds support for opening, manipulating, and saving many
different image file formats. It is available for Windows, Mac
OS X and Linux. Its successor project Pillow adds support for
Python 3.x. For the project described in this paper, Python
version 2.7.6 has been utilized. The 'sys'[11] library has also
been used to parse arguments of input image file from user and
a flag from the user, to be used during execution of the
program.

III. ALGORITHM

The flowchart given in Figure 4 illustrates the overall
algorithm followed for implementation.

Pseudo Code:

1)Prompt user for input image - select existing or take new
image from web cam or any such imaging device connected to
device used for the purpose.2)Pass the input image through the

Tesseract engine via the OS library with appropriate
parameters so as to produce the .box file. This file format is
output from the Tesseract engine itself and contains the
individually identified text in the input document as well as the
coordinates of these individual letters within the original
image.

2)Pass the input image through the Tesseract engine via the OS
library with appropriate parameters so as to produce the .box
file. This file format is output from the Tesseract engine itself
and contains the individually identified text in the input
document as well as the coordinates of these individual letters
within the original image.

3)Input substring to be searched from user. This can be letters,
words or phrases, input as String type data.

4)When substring has been received, calculate its length and
search the generated .box[12] file for all instances of the
substrings of same length as the input, with equal letter
positions(not counting the spaces between words, which is not
identified by Tesseract).

5) Once substring location has been identified (Output "True")
within the image, highlight the desired region using coordinate
data of individual letters as can be selected from the .box file
within a rectangle (using the PIL library). If no substring could
be identified in image, return output "False" and skip to step 7.

6)Display the image with identified substring(s) highlighted.

7)Prompt user to search for another substring in image. If yes,
go back to step 3. Else, to step 8.

8)Prompt user to input another image to be searched. If yes, go
back to step 1. Else, end the program.

For non-GUI application, the first argument (zeroth argument
is name of file itself) passed via the terminal and parsed by the
program, is a flag (taking value 0 or otherwise) which the user
can input to tell the program whether to regenerate the .box

file; and the input image name (.jpg file) can be
passed by user as second argument in the terminal.
The former, the first flag argument, is useful as

Fig 4: Flowchart representation of working

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume IV Issue II

ISSN NO: 2350-1146 I.F-5.11

www.asianssr.org Page 3

generation of the .box file is the most time and
memory consuming process in the application and
inclusion of a flag to make its generation optional
helps increase efficiency, especially when user
wants to search for multiple substrings within the
given image and/or accidentally or otherwise closed
the application and would like to search for another
substring in the last input image itself.

IV. APPLICATION IN BOARD BRING-UP

A primary motivation for implementing this project

came to the authors while working on a Board

Bring Up session at an embedded systems industry.

Board bring-up is a phased process whereby an

electronics system, inclusive of assembly, hardware,

firmware, and software elements, is successively

tested, validated and debugged, iteratively, in order

to achieve readiness for manufacture. It is an

absolute must before any embedded product is

brought to the market via mass production and is

unavoidably done by all manufacturers to prevent

loss and ensure reliability of the product. Board

bring up is often a very lengthy and arduous process

that takes up a lot of development time and is done

manually by trained verification engineers.

The first and most important step of Board bring up

is known as visual inspection. This is often also the

most tiring and time consuming phase, especially

for more complex circuits. Visual inspection phase

consists of the verification engineer manually

examining the printed board for defects. This

includes checking for short circuits, break in

connections, improper soldering, and making sure

all the components that should be in place are in

their correct places in the correct configuration and

polarity, and also making sure that components

marked as Don't Place (or its equivalent

terminology) haven't been placed(soldered) in the

circuit. For the same, during this procedure the

engineer has to go through text and image dense

technical schematics, the verbose Bill of

Materials(BoM) etc. These are often provided to

him/her as printed documents and are thus not

digitally search able. This proves as a disadvantage

as well as a waste of productive time for the

engineer as he/she has to look up and find specific

combination of numbers and words - substrings -

within an document and identify the location of

multiple such word number combinations iteratively

many number of times.

It is in such a scenario that the application

mentioned in this paper comes to use. The

verification engineer only needs to input an image

of the printed document and he/she can search it

easily for required component names etc, any

number of times easily and efficiently. Thus

locating a component mentioned on the Bill of

Material on the schematic, and thus on the printed

circuit board (PCB) becomes a much easier job for

the engineer. This application thereby increases the

work efficiency of verification engineers and thus

saves time, energy and resources.

V. MISCILLANEOUS APPLICATIONS

The solution can be used for easy searching text in

printed material. It can be a very tiresome activity to

search for a single word among thousands of them

in a book or other printed documents. With this

solution all that an user has to do is to enter the

word to be searched for in the application and scan

the document. The application will dynamically

highlight the respective text in the content. This

makes it very comfortable and time saving,

improving the work efficiency an user.

Most of the applications available provides features

like find, find and replace, etc. But there may be

cases where this facility is not available. This

solution can be of great usage in such scenarios. As

almost all of the soft copy content is in standard

fonts and not handwritten, this solution could be

easily used as an alternative there as tesseract is

equipped to deal with exactly such type of data.

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume IV Issue II

ISSN NO: 2350-1146 I.F-5.11

www.asianssr.org Page 4

In some cases, in a text content, there will be texts

in different fonts and orientations. Text sizes may

also differ. In such cases it will be very difficult to

search and the find feature may also not work. But

since this application uses image processing for

character recognition, it can find texts of any

printed font, size or orientation, making it a robust

solution.

VI. TEST RESULTS

VII. FUTURE WORK

Future works envisioned for this project include better GUI, a

more optimized OCR engine and more cross platform

usability. Another major area of development would

be to develop this project, currently working on

Fig 5: Test image identifying multiple words

within same text

Fig 6: Test Result with non White background and

multiple images

Fig 7: Clockwise from top left - Image taken from Mobile

Camera (12MP) of dense text, All detected letters in image

by OCR Engine, The number '22' located and highlighted in

image, The word "Trump" highlighted in image

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume IV Issue II

ISSN NO: 2350-1146 I.F-5.11

www.asianssr.org Page 5

linux OS desktops to Mobile Phones. The feasibility

of such a move has to be studied in terms of

processing power required and average processing

time for a standard image across OS and hardware

specification. Developing this project as a mobile

application would hugely increase its scope of

usage and ease of access. Making the application

voice interactive can prove to be more comfortable.

Then, instead of typing the word to be searched, a

user need only speak it out before scanning. Going

further, it can also be integrated into cutting edge

technologies such as Smart Glasses like Google

Glass.

VIII. CONCLUSIONS

The proposed solution can be of huge advantage in
many situations. It is an example of converging
different technologies to make smarter solutions. It
has the capability to revolutionize the work in may
fields, making them more efficient and time saving.
It is clear that the solution is simple and robust.

REFERENCES

[1] R. Smith, "An Overview of the Tesseract OCR
Engine," Ninth International Conference on
Document Analysis and Recognition (ICDAR
2007), Parana, 2007, pp. 629-633. doi:
10.1109/ICDAR.2007.4376991
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&
arnumber=4376991&isnumber=4376969

[2] https://www.python.org/
[3] https://pillow.readthedocs.io/en/5.1.x/
[4] https://docs.python.org/3/library/tk.html
[5] https://docs.python.org/2/library/os.html
[6] https://pypi.org/project/pytesseract/
[7] https://opensource.google.com/projects/tesseract
[8] https://en.wikipedia.org/wiki/Tesseract_(softwar

e)
[9] https://en.wikipedia.org/wiki/TIFF
[10] https://en.wikipedia.org/wiki/BMP_file_format
[11] https://docs.python.org/2/library/sys.html
[12] https://www.reviversoft.com/file-extensions/box

http://www.asianssr.org/
https://pypi.org/project/pytesseract/

	I. Introduction
	II. IMPLEMENTATION
	III. ALGORITHM
	IV. APPLICATION IN BOARD BRING-UP
	V. MISCILLANEOUS APPLICATIONS
	VI. TEST RESULTS
	VII. FUTURE WORK
	VIII. CONCLUSIONS
	References

