Enhancing Solar Air Heater Heat Transfer Performance: The Impact of Hexagonal 90° and 120° Inline Ribs with Varying Blockage Ratios in Trapezoidal Ducts

  • Nilesh M. Shinde Department of Mechanical Engineering, Medi-Caps University, Indore, India
  • Dr. Himanshu Borade Department of Mechanical Engineering, Medi-Caps University, Indore, India
Keywords: Convective heat transfer, blockage ratio, heat transfer raise, artificial roughness, and hexagonal ribs.

Abstract

An experimental investigation was carried out to evaluate the thermo-hydraulic performance of a solar air heater (SAH) equipped with a hexagonal ribbed absorber plate. The study examines the effects of geometric parameters—blockage ratio (e/Dh = 0.1109, 0.1479, and 0.1849), rib pitch (P = 60 mm, 80 mm, and 100 mm), and angle RIDWWDFNĮ DQGRQKHDWWUDQVIHUDQGIORZG\QDPLFV within a trapezoidal duct, over a Reynolds number range of 5000 to 30,000. Trapezoidal ducts were selected for their ability to enhance surface area and flow interaction. For Reynolds numbers ranging from 5000 to 30,000, the Nusselt number for Į LQOLQHULEVLQFUHDVHGE\–ZKLOHWKHĮ inline ribs exhibited a higher enhancement of 40–60%. This improvement in heat transfer was accompanied by an increase LQIORZUHVLVWDQFH7KHIULFWLRQIDFWRUIRUĮ ULEVZDV about 1.5–WLPHVKLJKHUWKDQWKHVPRRWKGXFWZKHUHDVIRUĮ  ULEVLWLQFUHDVHGE\QHDUO\–3.0 times. Considering both parameters, the thermo-hydraulic performance factor 73)ZDVIRXQGWREHVXSHULRUIRUWKHĮ FRQILJXUDWLRQ UDQJLQJIURPWRFRPSDUHGWRWRIRUWKHĮ  FDVH7KLVVXJJHVWVWKDWKLJKHUDQJOHVDQGEORFNDJHUDWLRV enhance turbulence and mixing, improving heat transfer with manageable pressure losses. Overall, the hexagonal ribbed absorber significantly improves thermal efficiency, offering a promising and cost-effective solution for enhancing solar air heater performance while supporting energy efficiency and environmental sustainability. 

References

1. Alsaiari, A. O., Iqbal, A., Abdulkhair, H., Gzara, L., Almatrafi, E., Alzahrani, H. A. H., Madhukeshwara, N., Prasanna, B. M., & Aljohani, M. (2022). Heat transmission and air flow friction in a solar air heater with a ribbed absorber plate: A computational study. Case
Studies in Thermal Engineering, 40, 102517.
https://doi.org/10.1016/j.csite.2022.102517
2. Ghritlahre, H., & Prasad, R. (2018). Prediction of exergetic efficiency of arc shaped wire roughened solar air heater using ANN model. International Journal of Heat and Technology, 36(3), 1107–1115. https://doi.org/10.18280/ijht.360343
3 Kumar, R., Verma, S. K., Gupta, N. K., Mendiburu, A. Z., Sharma, A., Alam, T., & Eldin, S. M. (2023). Experimental assessment and modeling of solar air heater with V shape roughness on absorber plate. Case Studies in Thermal Engineering, 43, 102784.
https://doi.org/10.1016/j.csite.2023.102784
4 J. Nikuradse, Laws of Flow in Rough Pipes, 1292, NACA Technical Memorandum, 1950.
5. Agrawal, Y., Bhagoria, J. L., Gautam, A., Sharma, A., Yadav, A. S., Alam, T., Kumar, R., Goga, G., Chakroborty, S., & Kumar, R. (2023). Investigation of thermal performance of a ribbed solar air heater for sustainable built environment. Sustainable Energy Technologies and Assessments, 57, 103288. https://doi.org/10.1016/j.seta.2023.103288
6. Chabane, F., Grira, F., Moummi, N., & Brima, A. (2019). Experimental study of a solar air heater by adding an arrangement of transverse rectangular baffles perpendicular to the air stream. International Journal of Green Energy, 16(14), 1264–1277. https://doi.org/10.1080/15435075.2019.1671401
[7] Nidhul, K., Yadav, A. K., Anish, S., & Arunachala, U. C. (2022). Thermo-hydraulic and exergetic performance of a cost-effective solar air heater: CFD and experimental study. Renewable Energy, 184, 627–641 . https://doi.org/10.1016/j.renene. 2021.11.111
[8] Abulkhair, H., Alsaiari, A. O., Ahmed, I., Almatrafi, E., Madhukeshwara, N., & Sreenivasa, B. R. (2023). Heat transfer and air flow friction in solar air heaters: A comprehensive computational and experimental investigation with wire-roughened absorber plate. Case
Studies in Thermal Engineering, 48, 103148. https://doi.org/10.1016/j.csite.2023.103148
[9] Kamali, R., & Binesh, A. R. (2008). The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces. International Communications in Heat and Mass Transfer, 35(8), 1032–1040. https://doi.org/10.1016/j.icheatmasstransfer.2008.04.012
[10] Peng, W., Jiang, P.-X., Wang, Y.-P., & Wei, B.-Y. (2011). Experimental and numerical investigation of convection heat transfer in channels with different types of ribs. Applied Thermal Engineering,
31(14–15), 2702–2708. https://doi.org/10.1016/j.applthermaleng.2011.04.040

[11] Varun Kumar, B., Manikandan, G., & Rajesh Kanna, P. (2021). Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD. Energy, 234, 121154.
https://doi.org/10.1016/j.energy.2021.121154
[12] Karmveer, Kumar Gupta, N., Alam, T., & Singh, H. (2024). An Experimental Study of Thermohydraulic Performance of Solar Air Heater Having Multiple Open Trapezoidal Rib Roughnesses. Experimental Heat Transfer, 37(3), 313–333.
https://doi.org/10.1080/08916152.2022.2139024
[13] Yadav, A. S., & Bhagoria, J. L. (2014). A CFD based thermohydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate. International Journal of Heat and Mass Transfer, 70, 1016–1039. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.074
[14] Kumar, R., Verma, S. K., Gupta, N. K., Mendiburu, A. Z., Sharma, A., Alam, T., & Eldin, S. M. (2023). Experimental assessment and modeling of solar air heater with V shape roughness on absorber plate. Case Studies in Thermal Engineering, 43, 102784.
https://doi.org/10.1016/j.csite.2023.102784
[15] Mahanand, Y., & Senapati, J. R. (2020). Thermal enhancement study of a transverse inverted-T shaped ribbed solar air heater. International
Communications in Heat and Mass Transfer, 119,
104922.https://doi.org/10.1016/j.icheatmasstransfer.2020.104922
[16] Patel, Y. M., Jain, S. v., & Lakhera, V. J. (2021). Thermo-hydraulic performance analysis of a solar air heater roughened with discrete reverse NACA profile ribs. International Journal of Thermal Sciences, 167, 107026. https://doi.org/10.1016/j.ijthermalsci.2021.107026
[17] Mahanand, Y., & Senapati, J. R. (2022). Thermo-fluid analysis of a pentagonal ribbed triangular solar air heater duct (TSAHD): A threedimensional numerical investigation. International Communications in Heat and Mass Transfer, 137, 106258.
https://doi.org/10.1016/j.icheatmasstransfer.2022.106258
[18] Dutt, N., Hedau, A. J., Kumar, A., Awasthi, M. K., Singh, V. P., & Dwivedi, G. (2023). Thermo-hydraulic performance of solar air heater having discrete D-shaped ribs as artificial roughness. Environmental
Science and Pollution Research. https://doi.org/10.1007/s11356-023-
28247-9
[19] Nidhul, K., Kumar, S., Yadav, A. K., & Anish, S. (2020). Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis. Energy, 200, 117448.
https://doi.org/10.1016/j.energy.2020.117448
[20] Hans, V. S., Saini, R. P., & Saini, J. S. (2010). Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs. Solar Energy, 84(6), 898–911. https://doi.org/10.1016/j.solener.2010.02.004
[21] Jin, D., Quan, S., Zuo, J., & Xu, S. (2019). Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple
V-shaped ribs. Renewable Energy, 134, 78–88.
https://doi.org/10.1016/j.renene.2018.11.016
[22] Bekele, A., Mishra, M., & Dutta, S. (2014). Performance characteristics of solar air heater with surface mounted obstacles.
Energy Conversion and Management, 85, 603–611. https://doi.org/10.1016/j.enconman.2014.04.079
[23] Nanjundappa, M. (2020). Optimum thermo-hydraulic performance of solar air heater provided with cubical roughness on the absorber surface. Experimental Heat Transfer, 33(4), 374–387. https://doi.org/10.1080/08916152.2019.1652214
[24] Antony, A. L., Shetty, S. P., Madhwesh, N., Yagnesh Sharma, N., & Vasudeva Karanth, K. (2020). Influence of stepped cylindrical turbulence generators on the thermal enhancement factor of a flat plate solar air heater. Solar Energy, 198, 295–310.
https://doi.org/10.1016/j.solener.2020.01.065
[25] Arunkumar, H. S., Kumar, S., & Karanth, K. V. (2020). Analysis of a solar air heater for augmented thermohydraulic performance using helicoidal spring shaped fins-A numerical study. Renewable Energy, 160, 297–311. https://doi.org/10.1016/j.renene.2020.06.098
[26] Bezbaruah, P. J., Das, R. S., & Sarkar, B. K. (2021). Experimental and numerical analysis of solar air heater accoutered with modified conical vortex generators in a staggered fashion. Renewable Energy, 180, 109–131. https://doi.org/10.1016/j.renene.2021.08.046
[27] Saravanan, A., Murugan, M., Reddy, M. S., Ranjit, P. S., Elumalai, P. V., Kumar, P., & Sree, S. R. (2021). Thermo-hydraulic performance of a solar air heater with staggered C-shape finned absorber plate. International Journal of Thermal Sciences, 168, 107068.
https://doi.org/10.1016/j.ijthermalsci.2021.107068
[28] Sharma, S. L., Kishor, K., Bisht, V. S., Debbarma, A., & Gaur, A. (2024). CFD analysis of artificially roughened solar air heater: a comparative study of C-Shape, reverse C-Shape, and reverse R-Shape roughness element. International Journal of Ambient Energy, 45(1). https://doi.org/10.1080/01430750.2024.2331240
[29] Azadani, L. N., & Gharouni, N. (2021). Multi objective optimization of cylindrical shape roughness parameters in a solar air heater.
Renewable Energy, 179, 1156–1168.
https://doi.org/10.1016/j.renene.2021.07.084
[30] Alzahrani, H. A. H., Danappa, G. T., Anantha Prasad, M. G., Rajesh, K., al Jadidi, S., Madhukeshwara, N., & Prasanna, B. M. (2023). Enhancing solar air heater efficiency with 3D cylinder shaped roughness elements. Case Studies in Thermal Engineering, 51, 103617. https://doi.org/10.1016/j.csite.2023.103617
[31] Alsaiari, A. O., Alzahrani, H. A. H., N, M., & Prasanna, B. M. (2022). Heat transfer augmentation in a solar air heater with conical roughness elements on the absorber. Case Studies in Thermal Engineering, 36, 102210. https://doi.org/10.1016/j.csite.2022.102210
[32] Kumar, V., & Murmu, R. (2023). Performance based investigation of inclined spherical ball roughened solar air heater. Applied Thermal
Engineering, 224, 120033. https://doi.org/10.1016/j.applthermaleng.2023.120033
Published
2025-12-10
How to Cite
M. Shinde, N., & Borade, D. H. (2025). Enhancing Solar Air Heater Heat Transfer Performance: The Impact of Hexagonal 90° and 120° Inline Ribs with Varying Blockage Ratios in Trapezoidal Ducts. Asian Journal For Convergence In Technology (AJCT) ISSN -2350-1146, 11(1), 46-55. Retrieved from http://www.asianssr.org/index.php/ajct/article/view/1429

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.