Study of Piezoelectric Energy Harvester

  • Ajay Sudhir Bale
  • Tanuja U
  • Darshan Gowda G
Keywords: Bimorph, vibration frequency, Seismic, piezoelectric, proof mass.


This work presents a miniature piezoelectric model that analyses the generated electrical energy occurring from the variations in the acceleration. It consists of a seismic energy harvester or a bimorph whichisfixedtoavibratingsourceatoneendandaproof masstoanotherend.Thebimorphisatgroundpotential and two electrodes are placed at the outer surface of the cantilever beam. A fixed electric load calculates the frequency of vibration and the acceleration thus caused by the virtue of DC output voltage is found to be linear. Various Piezoelectric materials are used to analyze the vibration and acceleration on the model. This energy harvesters find applications in volcanic seismic equipment’s as this modeled system can provide a small amount of energy to detect the seismicwaves.


[1] Elie Lefeuvre, David Audigier, Claude Richard, and Daniel Guyomar, “Buck-Boost converter for sensorless power optimisation of Piezoelectric Energy Harvester,” IEEE Transactions on Power Electronics, Vol.22, No.5, September 2007.
[2] Xinping Cao, Wen- Jen Chiang, Ya- Chin King, “ Electromagnetic energy harvesting circuit with feedforward and feedback DC-DC PWM boost converter for vibration power generator system,” IEEE Transaction on power electronics, vol., 22, no.2, March2007.
[3] D. Gislason, ZigBee Wireless Networking. London: Newnes Publications,2008.
[4] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, Transmission of IPv6 Packets over IEEE 802.15.4 Networks. LowPAN Standard. RFC4944 (2007) [Online]. Available:
[5] Neurosky:Technology.(2009).[Online].Available:
[6] S.Wright,D.Scott,J.Haddow,andM.Rosen.Theupperlimit to solar energy conversion. In 35th Energy Conversion Engineering Conference and Exhibit (IECEC), volume 1, pages 384 – 392, July2000.
[7] C. Melhuish. The ecobot project. autonomy/EcoBot webpage.html.
[8] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and J. Lang. Vibration-to-electric energy conversion. In ISLPED, pages 48–53.ACM Press,1999.
[9] M. Rahimi, H. Shah, G. S. Sukhatme, J. Heidemann, and D. Estrin. Studying the feasibility of energy harvesting in a mobile sensor network. In IEEE Int’l Conference onRobotics and Automation,2003.

[10] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and J. H. Lang, “Vibration-to-electric energy conversion,”IEEETrans.VLSISyst.,vol.9,no.1,pp.64–76, Feb.2001.
[11] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B. Srivastava,“Designconsiderationsforsolarenergyharvesting wireless embedded systems,” in Proc. IEEE IPSN, Apr.2005, pp. 457–462.
[12] S.ChalasaniandJ.M.Conrad,“Asurveyofenergyharvesting sources for embedded systems,” in Proc. IEEE Southeastcon, 2008, pp. 442–447.
[13] “Power from thin air,” Economist, Jun. 10,2010.
[14] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity and yield in a volcano monitoring sensor network,” in Proc. 7th USENIX OSDI, 2006, pp.381–396.
[15] D. Graham-Rowe, “Wireless power harvesting for cell phones,” MIT Technol. Rev., Jun.2009.
[16] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-awarewirelessmicrosensornetworks,”IEEESignal Process. Mag., vol. 19, no. 2, no. pp. 40–50,2002.
[17] G.A.Lesieutre,G.K.Ottman,andH.F.Hofmann,“Damping as a result of piezoelectric energy harvesting,” J. Sound Vib., vol. 269, pp. 991–1001,2004.
[18] M. Umeda, K. Nakamura, and S. Ueha, “Energy storage characteristics of a piezo-generator using impact induced vibration,” Jpn. J. Appl. Phys., vol. 36, pp. 314–315,1997.
[19] M. Goldfarb and L. D. Jones, “On the efficiency of electric power generation with piezoelectric ceramic,” Amer. Soc. Mech.Eng.J.DynamicSyst.Meas.Contr.,vol.121,pp.566– 571, 1999.
[20] H. A. Sodano, E. A. Magliula, G. Park, and D. J. Inman, “Electric power generation from piezoelectric materials,” in 13th Int. Conf. Adaptive Struct. Technol., 2002, pp.153–157.
[21] Yiming Liu, “Investigation of electrostrictive Polymers for energy harvesting,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol.52, no.12, December2005.
[22] Q. M. Zhang and J. Scheinbeim, “Electric EAP,” in Electroactive Polymer [EAP] Actuators as ArtificialMuscles.
Y. Bar-Cohen, Ed. 2nd ed. Bellingham: SPIE Press, 2004, pp. 95–150.
[23] H.-W. Joo, C.-H. Lee, J.-S. Rho, and H.-K. Jung, “Identification of material constants for piezoelectric transformersbythree-dimensional,finite-elementmethodand a design-sensitivity method,” IEEE Trans.Ultrason. Ferroelectr. Freq. Contr., vol. 50, no. 8, pp. 965–971, Aug. 2003.
[24] E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, “Piezoelectric energy harvesting device optimization by synchronous electric charge extraction,” J. Intell. Mater. Syst. Struct., vol. 16, pp. 865–876, Oct.2005.
[25] S.Waqar,L.Wang,S.John,“Piezoelectricenergyharvesting from intelligent textiles,” Electronic textiles, Elsevier Ltd, 2015.
How to Cite
Bale, A. S., U, T., & Gowda G, D. (2019). Study of Piezoelectric Energy Harvester. Asian Journal For Convergence In Technology (AJCT), 5(2). Retrieved from